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Abstract—A common criticism of deep learning relates to
the difficulty in understanding the underlying relationships that
the neural networks are learning, thus behaving like a black-
box. In this article we explore various architectural choices of
relevance for music signals classification tasks in order to start
understanding what the chosen networks are learning. We first
discuss how convolutional filters with different shapes can fit
specific musical concepts and based on that we propose several
musically motivated architectures. These architectures are then
assessed by measuring the accuracy of the deep learning model
in the prediction of various music classes using a known dataset
of audio recordings of ballroom music. The classes in this dataset
have a strong correlation with tempo, what allows assessing if
the proposed architectures are learning frequency and/or time
dependencies. Additionally, a black-box model is proposed as a
baseline for comparison. With these experiments we have been
able to understand what some deep learning based algorithms
can learn from a particular set of data.

I. INTRODUCTION

The amount of available music audio recordings is con-
stantly growing. However, most of the recordings are poorly
labeled and this difficult its identification and access. Indexing
such musical content with semantic labels has been a research
topic within the field of music information research (MIR)
for the past two decades. Having such semantic information
per music track would allow to better organize the existing
music repositories and would enable users to better explore
the music collection space, what would increase the retrieval
and use possibilities.

Nowadays, deep learning approaches irrupted strongly into
the MIR community. Even some researchers declare that is the
time for a paradigm shift: from hand-crafted features and shal-
low classifiers to deep processing models [8]. A brief review
of the state-of-the-art in MIR and deep learning reveals that
such algorithms achieved competitive results in a relatively
short amount of time – most relevant papers were published
during the last 5 years. Many researchers successfully used
deep learning for several tasks: onset detection [17], genre
classification [2], chord estimation [23], auto-tagging [4] or
source separation [7]. However, not only good results are
supporting the strong irruption of this technology in the MIR
field, deep learning underlying conceptual construction can be
advantageous for musical analysis:

• Music is hierarchic in frequency (note, chord) and time
(onset, rhythm). Deep learning can naturally allow this hi-
erarchic representation since its architecture is inherently
hierarchical due to its depth.

• Relationships between musical events in the time domain
are important for human music perception. Using recur-
rent neural networks [5] (RNNs) and/or convolutional
neural networks [9] (CNNs), the net is capable to an-
alyze such temporal context. RNNs can model long-term
dependencies (music structure or recurrent harmonies)
and CNNs can model the local context (instrument’s
timbre or musical units). RNNs can also model short-
term dependencies, meaning that by architectural choices
researchers can tailor the net towards learning musical
aspects in manifold ways.

Regardless of the competitive results achieved and the concep-
tual benefits of using deep learning approaches, there is still
a lack of understanding. We still do not fully grasp what the
nets are learning. Dieleman et al. made some progress showing
that ”higher-level features are defined in terms of lower-level
features” for music [3]. They found1 that the first convolutional
layer in their deep learning music recommendation system had
filters specialized in low-level musical concepts (vibrato, vocal
thirds, pitches, chords), whereas the third convolutional layer
filters were specialized in higher-level musical concepts (chris-
tian rock, chinese pop, 8-bit). This matches with similar results
found by the image processing research community where
lower layers are capable of learning shapes that are com-
bined in higher layers to represent objects [22]. Furthermore,
Dieleman et al. [2] also proposed a deep learning algorithm
that preserves musically significant timescales (beats-bars-
themes) within the design of the architecture, what ”leads to an
increase in accuracy” for music classification tasks and gives
an intuition of what the network may be learning; showing
that musically motivated architectures may be beneficial for
MIR. Moreover, Choi et al. [1] proposed a method called
auralisation which is an extension of the CNNs visualization
method [22]. Thus, it allows to interpret by listening what each
CNN filter has learned.

1http://benanne.github.io/2014/08/05/spotify-cnns.html



Despite the efforts on trying to puzzle out what the networks
are learning, it is still not clear how to navigate through the
network parameters space. It is hard to discover the ade-
quate combination of parameters for a particular musical task,
which leads to architectures being difficult to interpret. Given
this, our work aims to rationalize this process by proposing
musically motivated architectures. Specially, we study how
CNNs can be tailored towards learning generalizable musical
concepts. For doing so, in section II we conceptually discuss
what CNN filters with different shapes can learn and, in section
III and IV, we validate such concepts on experiments. Several
architectures are evaluated against a dataset that is known for
having classes that are already well represented by (solely)
its tempo: the Ballroom dataset. The special characteristics
of this dataset, allow us assessing musically inspired CNNs
architectures. Section V concludes and points out future work.

II. MOTIVATIONS

A. Audio material

Experiments are realized using the Ballroom dataset2: 698
tracks, around 30 seconds long, divided into 8 music genres:
cha-cha-cha, jive, quickstep, rumba, samba, tango, viennese-
waltz and slow-waltz. Despite its known shortcomings [6]
[20], this dataset has been used extensively and it allows to:

• evaluate our algorithm comparing it with state-of-the-art
results: Marchand et al. [11] achieved 93.12% accuracy
predicting the Ballroom classes – without using BPM
annotations. We set this algorithm as the baseline for
our deep learning methods using time-frequency features
because Marchand et al. take advantage of time and
frequency cues, as well.

• understand the musical characteristics of the Ballroom
dataset. Even though this dataset was originally designed
to study rhythmic patterns, Gouyon et al. [6] showed that
each Ballroom class is already rather well characterized
by its tempo. A k-nearest neighbor (with k=1) using the
BPM annotations achieved 82.3% accuracy. Therefore,
tempo and rhythm are relevant when predicting the Ball-
room classes.

We expect our network to learn such relevant temporal
dependencies from data. In particular, we propose a CNN
architecture (Time) specifically designed to fit those. For fair
comparison, we consider Gouyon et al. [6] as a baseline for
these methods only using temporal features. We also propose
another architecture (Frequency) that is designed not to learn
such relevant temporal dependencies. For these methods, we
set a random baseline based on the probability of guessing the
most likely Ballroom class, cha-cha-cha: 15.9 %. Therefore,
the Ballroom dataset allows us assessing musically motivated
architectures; for that reason no more datasets are used.

The audio is fed to the network through fixed-length mel-
spectrogram samples [15], N frames wide. Interestingly, Diele-
man et al. [4] input raw audio to the network and found that the
lowest convolutional layer was learning ”frequency-selective

2http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html

features covering the lower half of the spectrum”, similarly to
what a mel filter-bank does, what motivates our choice.

Throughout this work we use 40 bands mel-spectrograms
derived from a STFT-spectrogram computed with a Blackman
Harris window of 2048 samples (50% overlap) at 44.1 kHz.
Phases are discarded.

B. Deep learning

Several architectures can be combined to construct deep
learning algorithms: feed-forward neural networks, RNNs or
CNNs. However, since the goal of our work is to tailor the
network towards learning musically relevant features, CNNs
seemed an intuitive choice regarding that the input data is for-
matted as a spectrogram. CNNs fed with spectrograms allow
the design of CNNs filters having interpretable dimensions
in the first layer: time and frequency, this allows designing
musically motivated architectures.

1) Filter shapes: Due to the CNNs success in the image
processing research field, its literature significantly influenced
the MIR community. In the image processing literature,
squared small CNNs filters (i.e. 5x5 or 12x12) are common
[22]. As a result of that, MIR researchers tend to use similar
filter shape setups [1] [17] [14]. However, note that the image
processing filter dimensions have spatial meaning, while the
audio spectrograms filters dimensions correspond to time and
frequency. Therefore, wider filters may be capable of learning
longer temporal dependencies in the audio while higher filters
may be capable of learning more spread timbral features. In or-
der to motivate researchers to be conscious about the potential
impact of choosing one filter shape or another, three examples
and a use case are discussed in the following. Throughout
this manuscript we assume the spectrogram dimensions to be
M -by-N and the filter dimensions to be m-by-n. M and m
standing for the number of frequency bins and N and n for
the number of time frames:

• Squared/rectangular filters (m-by-n filters) are capable of
learning time and frequency features at the same time.
This kind of filter is one of the most used in the MIR
literature. Such filters can learn different musical aspects
depending on how m and n are set. For example, the
bass could be well modeled with a small filter (m � M
and n � N , representing a sub-band for a short-
time) because: this instrument is sufficiently characterized
by the lower bands of the spectrum and the temporal
evolution of the bass notes is not so long. An interesting
interpretation of such small filters is that they can be
considered pitch invariant to some extent. Since the
convolution also happens in the frequency domain, such
filters can be modulated to represent different pitches.
However, note that such pitch invariability would not
hold for instruments having a large pitch range since
the timbre of an instrument changes accordingly to its
pitch. As another example, cymbals or snare drums –
that are broader in frequency with a fixed decay time–
could be suitably modeled setting m = M and n � N .



Please note that a bass could also be modeled with this
filter but the pitch invariance interpretation will not hold
because its dimensions (m = M ) do not allow the filter
to convolve along frequency and therefore, the pitch will
be encoded together with the timbre.

• Temporal filters (1-by-n): setting the frequency dimen-
sion m to 1, such filters will not be capable of learning
frequency features but will be specialized on finding
temporal dependencies relevant for the task to be learned
from the training data. However, note that even though
the filters themselves are not learning frequency features,
upper layers may be capable of exploiting frequency
relations – the frequency interpretation still holds for the
resulting activations because the convolution operation
is done bin-wise (m=1). From the musical perspective,
one expects those temporal filters to learn relevant rhyth-
mic/tempo patterns within the analyzed bin.

• Frequency filters (m-by-1): setting the time dimension n
to 1, such filters will not be capable of learning temporal
features but will be specialized on modeling frequency
features relevant for the task to be learned from the
training data. Similarly as for the temporal filters, upper
layers could still find some temporal dependencies from
the resulting activations. From the musical perspective,
one expects these frequency filters to learn pitch, timbre
or equalization setups, for example.

To conclude this section, we would like to discuss the results
of Choi et al. [1]3 as a use case. They use a 4-layer CNN
of squared 12-by-12 filters. After auralising and visualizing
the network filters, they conclude that their deep learning
algorithm was capable of: finding attack/onsets, selecting bass
notes and separating kick drums. As previously discussed,
squared small filters may be capable of modeling instruments
appearing in a sub-band (bass and kick) and also to model
temporal features (onsets) due to its length. However, what
would be a surprise is to observe that such a network is
modeling cymbals or snare drums, what may be definitely
challenging for a CNN with such filter shapes.

III. EXPERIMENTS

Three architectures are introduced to experiment with filter
shapes that are designed to fit several music concepts:

1) Black-box architecture. This system is based on previous
work using a m-by-n CNN filter architecture for the task
of music classification [10]. In this setup –obtaining the
best results for the MIREX 2015 task of music/speech
classification4– a single convolutional layer with 15 12-
by-8 filters and a 2-by-1 max-pool layer has been used,
followed by a feed-forward layer of 200 units connected
to the output softmax layer. We adapted this approach to
further get better accuracy results changing slightly the

3http://keunwoochoi.blogspot.com.es/2015/10/ismir-2015-lbd.html
4http://www.music-ir.org/mirex/wiki/2015:Music/

/Speech Classification and Detection Results

setup to 32 12-by-8 filters and a max-pool layer of 4-by-
1 (cf. Figure 1). Such tests are not discussed throughout
this manuscript because this is not the focus of the paper.

2) Time architecture is particularly designed to learn tem-
poral dependencies. It is composed by a convolutional
layer of 32 temporal filters (1-by-n) followed by a max-
pool layer of (M-by-1) connected to the output layer
(cf. Figure 2). The fact that the max-pool layer spans
all over the frequency axis (m=M) and covers only one
frame (n=1), allows: propagating only temporal content
due to the summarization done among frequencies and
preserving the frame resolution, respectively.

3) Frequency architecture is designed to learn frequency
features. It is composed by a convolutional layer of 32
frequency filters (m-by-1) followed by a max-pool layer
of (1-by-N) connected to the output layer (cf. Figure 3).
The max-pool layer (with n=N) operates similarly as in
the Time architecture, but in that case the summarization
is in time. Note that the extreme case of a Frequency
architecture would be to input only one frame to the
network; however, we expect the statistics provided by
the max-pool layer to help the network learning timbral
cues.

Fig. 1. Schema of the Black-box architecture.

Fig. 2. Schema of the Time architecture.

Black-box follows the standard architecture that one can find
in the literature [1] [14]. We call it black-box because there is
no musically motivated reason for such architectural choices.
Note that the feature maps resulting of the convolutional layer
are difficult to interpret because there is not apparent motiva-



Fig. 3. Schema of the Frequency architecture.

tion behind. Time and Frequency are introduced as musically
inspired systems. No additional feed-forward layer (as in the
Black-box) is put before the output layer to control that all
the resulting feature maps are interpretable. Considering that
the networks are trained using the Ballroom dataset, the Time
architecture may be capable of learning tempo/rhythm features
and the Frequency architecture may be capable of learning
relevant timbral cues.

Experimenting with the filter shapes of the previously pre-
sented architectures, we discuss several musically motivated
choices:

1) Filter length for learning temporal dependencies:
One of the goals of our work is to model the relevant
temporal dependencies within the Ballroom dataset. In
this subsection we focus on tempo. Short temporal filters
may have difficulties on learning slow tempos, two filter
lengths are studied for the Time architecture:

• 60 frames (≈ 1.4 sec). Only 1 beat can be accom-
modated by the filter for the slowest tempo in the
Ballroom dataset, 60 BPMs. However, the filter can
learn about 5 beats for the fastest tempo in the
Ballroom dataset, 224 BPMs.

• 200 frames (≈ 4.6 sec). Up to 4 beats can be
learned by such filter for the slowest tempo, 60
BPMs. However, the filter can fit 17 beats for the
fastest tempo in the Ballroom dataset, 224 BPMs.

For the Black-box architecture we study two filter
lengths: n = 8 and n = 200. The former is based
on previous work where the filter shape was optimized
for estimating the Ballroom classes while the latter is
motivated by the previous discussion. For experiments
with n = 8 and n = 60, the input spectrogram is set to
80 frames. However, for experiments with 200 frames
filters, the input is enlarged to 250 frames. As result
of increasing the number of frames available for each
spectrogram, less spectrogram segments are sampled per
track, meaning that less training examples are available
although we are using the same dataset.

2) Pitch invariant filters:
Even though the pitch invariability of such filters still
needs to be proven formally, intuitively it seems benefi-
cial that the filter can convolve in frequency (m < M ).
In that way, it can learn frequency features that are less

pitch dependent and therefore, the frequency filters are
capable of learning more general concepts (i.e. timbre).
Within the Frequency architecture experiments, we asses
several frequency filter shapes (setting m differently) to
study how pitch invariant filters behave when predicting
the Ballroom classes.

Finally, we join in the same model the Time and Frequency
architectures that achieved better accuracies predicting the
Ballroom classes in previous experiments. Figure 4 depicts an
schema of this combined architecture. The motivation behind
this model is to join the Time and Frequency architectures,
that are learning complementary aspects from the data, to
create a more expressive musically motivated architecture. A
feed-forward layer of 200 units is set on top of the Time
and Frequency architectures to allow the network making
use of time and frequency features jointly. We experiment
with two setups, learning from: (1) random initialization or
(2) weights initialized with the previous Time and Frequency
most successful models. We refere to these architectures as
(1) Time-Frequency and (2) Time-FrequencyInit, respectively.
The Time and Frequency parts in the Time-FrequencyInit
combined network are initialized using the best model for Time
and Frequency architectures, respectively. Each initialization
considers its corresponding model trained earlier in the same
fold to avoid training/testing with the same data.

Fig. 4. Schema of the Time-Frequency & Time-FrequencyInit architectures.

A. Experimental setup

A dynamic range compression is applied to the input
spectrograms element-wise in the form of log(1 + C · x)
where C = 10.000 is a constant controlling the amount of
compression [4]. The resulting spectrograms are normalized so
that the whole dataset spectrograms (together) have zero mean
and variance one. Note that this normalization is not attribute-
wise, as this would perturb the relative information encoded
between spectrogram bins/frames. The activation functions of
the hidden layers are linear rectifiers [12] (ReLUs) with a
final 8-way softmax, where each output unit corresponds to



a Ballroom class. 50% dropout [19] is applied to the feed-
forward layers. The output unit having the highest output
activation is selected to be the model’s class prediction. Each
network is trained using minibatch gradient descent with
minibatches of 10 samples, minimizing the categorical cross-
entropy between predictions and targets for each sample. It
is trained from random initialization using an initial learning
rate of 0.01, unless said explicitly. The learning rate is divided
by two every time the training loss gets stuck, i.e. when it
does not improve for 40 epochs. The model reporting better
accuracy in the validation set is kept as the best model (a
variant of early-stopping [16]) to be evaluated in the test set for
accuracy report. All experiments are developed using Lasagne
–a Theano-based framework allowing GPU acceleration– and
are available online5.

B. Evaluation

Accuracies are computed using 10-fold cross validation with
a randomly generated train-validation-test split of 80%-10%-
10%. Since the input spectrograms are shorter than the total
length of the song spectrogram, several estimations for each
song can be done. A simple majority vote approach serves to
decide the estimated class.

IV. RESULTS & DISCUSSION

Results are presented in Table I.
The Black-box architecture reached inferior accuracy results

than the state-of-the-art provided by Marchand et al. [11].
The Time architecture is capable of achieving similar results

as Gouyon et al. This result provides evidence that it is
important to first understand the training datasets used by
our deep learning algorithms. Doing so, researchers should be
able to use such knowledge to design architectures that better
fit the problem. This is specially relevant for the MIR field
since it has already been pointed out that machine learning
algorithms are learning how to ”reproduce the ground truth”
rather than learning musical concepts [21]. Tackling deep
learning architectures in such a musical way, may reduce that
risk and will increase the capability of the systems to learn
musically relevant features. As a final reflection, note that
even it is clear that the temporal filters are learning relevant
temporal dependencies, we can not claim that these are tempo
or rhythm. Further research is needed to assess that with
experiments that tackle directly this issue.

Interestingly, the Frequency architecture is capable of learn-
ing discriminative frequency features from the data. It clearly
outperforms its baseline, denoting that the frequency features
are more relevant for predicting the Ballroom classes than
expected. However, this architecture does not outperform the
others since it was not designed to learn temporal dependen-
cies, that are capital for the Ballroom classes differentiation.

Wider filters (n=200) do not estimate better the Ballroom
classes than shorter ones (n=60). This result is surprising
because it seems a challenging task, even for a human, to

5http://github.com/jordipons/CBMI2016

discriminate the tempo with such short sounds – less than
2 seconds. Two plausible reasons exist to explain that shorter
filters are estimating better the Ballroom classes: (1) predicting
the Ballroom classes do not mean explicitly predicting tempo
and (2) less training examples are available because for using
longer filters we need to input longer spectrograms to the
network, which decreases the number of sampled spectrograms
per track. Exploring data augmentation paradigms may be
interesting to improve accuracy results for longer filters. In
fact, data augmentation is a powerful tool where musically
motivated choices could be done. For example, Nam et al.
[13] proposed a method called onset-based sampling, that
samples tracks considering the onset times instead of sampling
arbitrarily. Thus, allows sampling the data in a musically
meaningful way that allows overlapping. Such overlapping on-
set sampling may be an interesting data augmentation strategy
to be considered. However, many other musically inspired data
augmentation strategies could be adopted: pitch shifting, time
stretching [18] or even re-mixing [7].

Designing the filters such that they can convolve in fre-
quency (m < M ), helps predicting the Ballroom classes.
This probably prevents the filters to learn individual pitches
centering its capacity on modeling timbre, what allows the
network to be more expressive. Also note that the performance
improves when reducing m down to 32. We speculate that
small filters (m < 32) may have difficulties on learning timbral
features. Finally, note that this pitch invariance also happens
in a similar way for the Time architecture. Allowing the filter
to convolve along time, the network is able to fit the filter at
the point in time where the beats are happening. Thus, it could
be considered as a time-position invariant filter as well.

The last block of experiments show that the musically
motivated Time-Frequency architectures can achieve similar
results as Black-box approaches. However, Time-Frequency
architectures are more interpretable since they were designed
for having under control what the network is passing through
layers. We expect these musically motivated architectures to
be more treatable, as they should allow researchers to dig
into what the networks have learned in a more intuitive
way. Moreover, the Time-FrequencyInit architecture estimates
slightly better the Ballroom classes than Time-Frequency,
denoting that pre-initializing the networks is beneficial. Thus,
it allows to start the optimization problem closer to a minimum
with stronger generalization properties.

Finally, we also want to remark the importance of the
training datasets for deep learning experiments. The here pre-
sented work was possible because the musical characteristics
of the Ballroom dataset are well known. Thus, it allowed us to
address the architectures and experiments design in a musical
way. Datasets with musicological description and with finer
annotations are indeed necessary for the advance of the MIR
state-of-the-art.

V. CONCLUSIONS AND FUTURE WORK

We have shown how CNNs can be designed having musical
aspects in mind. The network was trained on spectrograms,



TABLE I
FOUR ARCHITECTURES ARE STUDIED: Black-box, Time, Frequency AND Time-Frequency. EACH ONE IS PRESENTED IN A BLOCK, DIVIDED BY

HORITZONTAL LINES. Black-box AND Time STUDY DIFFERENT FILTER LENGTHS. Frequency STUDY PITCH INVARIANT FILTERS. Time-Frequency STUDY
DIFFERENT INITIALIZATION SCHEMES.

Input Filter shape Accuracy: mean ± std
Architecture (M,N) (m,n) # param. Max-pool 10 cross-fold validation Baseline

Black-box (40,80) (12,8) 3.275.312 (4,1) 87.25 ± 3.39 % 93.12 % → Marchand et al. [11]
Black-box (40,250) (12,200) 2.363.440 (4,1) 82.80 ± 5.12 % 93.12 % → Marchand et al. [11]

Time (40,80) (1,60) 7.336 (40,1) 81.79 ± 4.72 % 82.3% → Gouyon et al. [6]
Time (40,250) (1,200) 19.496 (40,1) 81.52 ± 3.87 % 82.3% → Gouyon et al. [6]

Frequency (40,80) (30,1) 3.816 (1,80) 59.45 ± 5.02% 15.9 % → Most probable class
Frequency (40,80) (32,1) 3.368 (1,80) 59.59 ± 5.82 % 15.9 % → Most probable class
Frequency (40,80) (34,1) 2.920 (1,80) 58.17 ± 3.58 % 15.9 % → Most probable class
Frequency (40,80) (36,1) 2.472 (1,80) 57.88 ± 5.38 % 15.9 % → Most probable class
Frequency (40,80) (38,1) 2.024 (1,80) 57.45 ± 5.93 % 15.9 % → Most probable class
Frequency (40,80) (40,1) 1.576 (1,80) 52.43 ± 5.63 % 15.9 % → Most probable class

Time-Frequency (40,80) (1,60)-(32,1) 196.816 (40,1)-(1,80) 86.54 ± 4.29 % 93.12 % → Marchand et al. [11]
Time-FrequencyInit (40,80) (1,60)-(32,1) 196.816 (40,1)-(1,80) 87.68 ± 4.44 % 93.12 % → Marchand et al. [11]

thus the CNN filter dimensions are interpretable in time and
frequency. We have used such observation to discuss how
several filter shapes can model musical aspects. Furthermore,
we have proposed some musically motivated deep learning
architectures and we have shown that these can achieve
competitive results on predicting the Ballroom dataset classes.
However, this work is only a step towards understanding what
the deep neural networks are modeling. As future work it is
planned to analyze what these musically motivated architec-
tures have learned, specially we would like to do experiments
studying the pitch invariant filters and to observe whether the
trained filters have learned tempo/rhythm or not.
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