
Deep neural networks for

music and audio tagging

Jordi Pons

TESI DOCTORAL UPF / 2019

Director de la tesi:

Dr. Xavier Serra i Casals

Dept. of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona





Copyright c© Jordi Pons, 2019. Licensed under:

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Dissertation submitted to the Deptartment of Information and

Communication Technologies of Universitat Pompeu Fabra in

partial fulfillment of the requirements for the degree of:

DOCTOR PER LA UNIVERSITAT POMPEU FABRA

Music Technology Group, Department of Information and Communication

Technologies, Universitat Pompeu Fabra, Barcelona.

iii

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/




A l’Alba, a la mare i a l’àvia.
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institució que ha esdevingut un referent mundial (a Barcelona!) en
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Abstract

ENGLISH — Automatic music and audio tagging can help increase

the retrieval and re-use possibilities of many audio databases that

remain poorly labeled. In this dissertation, we tackle the task of

music and audio tagging from the deep learning perspective and,

within that context, we address the following research questions:

(i) Which deep learning architectures are most appropriate for

(music) audio signals?

(ii) In which scenarios is waveform-based end-to-end learning feasible?

(iii) How much data is required for carrying out competitive deep

learning research?

In pursuit of answering research question (i), we propose to use mu-

sically motivated convolutional neural networks as an alternative to

designing deep learning models that is based on domain knowledge,

and we evaluate several deep learning architectures for audio at a low

computational cost with a novel methodology based on non-trained

(randomly weighted) convolutional neural networks. Throughout our

work, we find that employing music and audio domain knowledge dur-

ing the model’s design can help improve the efficiency, interpretabil-

ity, and performance of spectrogram-based deep learning models.
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For research questions (ii) and (iii), we perform a study with

the SampleCNN, a recently proposed end-to-end learning model, to

assess its viability for music audio tagging when variable amounts of

training data —ranging from 25k to 1.2M songs— are available. We

compare the SampleCNN against a spectrogram-based architecture

that is musically motivated and conclude that, given enough data,

end-to-end learning models can achieve better results.

Finally, throughout our quest for answering research question (iii),

we also investigate whether a naive regularization of the solution

space, prototypical networks, transfer learning, or their combination,

can foster deep learning models to better leverage a small number of

training examples. Results indicate that transfer learning and proto-

typical networks are powerful strategies in such low-data regimes.

CATALÀ — L’etiquetatge automàtic d’àudio i de música pot

augmentar les possibilitats de reutilització de moltes de les bases de

dades d’àudio que romanen pràcticament sense etiquetar. En aquesta

tesi, abordem la tasca de l’etiquetatge automàtic d’àudio i de música

des de la perspectiva de l’aprenentatge profund i, en aquest context,

abordem les següents qüestions cient́ıfiques:

(i) Quines arquitectures d’aprenentatge profund són les més adi-

ents per a senyals d’àudio (musicals)?

(ii) En quins escenaris és viable que els models d’aprenentatge pro-

fund processin directament formes d’ona?

(iii) Quantes dades es necessiten per dur a terme estudis d’investigació

en aprenentatge profund?

Per tal de respondre a la primera pregunta (i), proposem utilitzar

xarxes neuronals convolucionals motivades musicalment i avaluem
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diverses arquitectures d’aprenentatge profund per a àudio a un baix

cost computacional. Al llarg de les nostres investigacions, trobem

que els coneixements previs que tenim sobre la música i l’àudio ens

poden ajudar a millorar l’eficiència, la interpretabilitat i el rendiment

dels models d’aprenentatge basats en espectrogrames.

Per a les preguntes (ii – iii) estudiem com el SampleCNN, un

model d’aprenentatge profund que processa formes d’ona, funciona

quan disposem de quantitats variables de dades d’entrenament —

des de 25k cançons fins a 1’2M cançons. En aquest estudi, com-

parem el SampleCNN amb una arquitectura basada en espectro-

grames que està motivada musicalment. Els resultats experimen-

tals que obtenim indiquen que, en escenaris on disposem de sufi-

cients dades, els models d’aprenentatge profund que processen formes

d’ona (com el SampleCNN) poden aconseguir millors resultats que

els que processen espectrogrames.

Finalment, per tal d’intentar respondre a la pregunta (iii), també

investiguem si una regularització severa de l’espai de solucions, les

xarxes prototipades, l’aprenentatge per transferència de coneixement,

o la seva combinació, poden permetre als models d’aprenentatge pro-

fund obtenir més bons resultats en escenaris on no hi ha gaires dades

d’entrenament. Els resultats dels nostres experiments indiquen que

l’aprenentatge per transferència de coneixement i les xarxes prototi-

pades són estratègies útils quan les dades d’entrenament no són abun-

dants.
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Chapter 1

Motivation and scope

The amount of music and audio recordings that are accessible is con-

stantly growing. However, most of these recordings are poorly la-

beled and this difficult its identification and access. Indexing such

audio content with semantic labels has been a research topic for the

past two decades, because having such semantic information per au-

dio or music track would allow to better organize the existing audio

repositories. If solved, auto-tagging would enable users to better ex-

plore their audio collections, which would increase the retrieval and

re-use possibilities of this data. Hence, automatic audio tagging sys-

tems aim to predict semantically relevant tags from the audio signal.

This requires extracting acoustic features that are good estimators of

the type of tags we are interested in, followed by a single or multi-

label classification stage — or in some cases, regression stage (Choi

et al., 2016). A conventional approach consists in carefully design-

ing these features considering the domain expertise of a trained re-

searcher (Sordo et al., 2007; Prockup et al., 2015; Bayle et al., 2017).

However, it is difficult to envision what features are relevant to the
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task at hand. To address this challenge, artificial neural networks

have been explored to unify the feature extraction with the machine

learning classifier, and recent publications are showing promising re-

sults using deep neural networks (Dieleman and Schrauwen, 2014;

Choi et al., 2016; Lee et al., 2018). This dissertation focuses on us-

ing deep neural networks for automatically tagging music and audio

content.

This manuscript starts introducing the basic building blocks of

deep artificial neural networks (in Chapter 2), to later discuss how

these have been historically used for music informatics. Along with

this overview, we also discuss several use cases to help the reader un-

derstand the possibilities (and limitations) of current artificial neural

networks for music and audio. Out of this review, we found that:

(i) Deep artificial neural networks are a suitable tool for modeling

music computationally.

(ii) It exists an “end-to-end learning trend” among deep learning

researchers, who are exploring the possibilities of this approach.

(iii) Artificial neural networks require a significant amount of data

to be competitive.

These ideas have greatly influenced the development of this thesis,

and understanding their scope can be of utility to comprehend the

research directions we decided to pursue. Back when our work started

in 2015, the state of the above principles was the following:

(i) Artificial neural networks were not widely used for music and

audio. Hence, deep learning was still a promise to be explored

and it was not clear how researchers would adopt it.
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(ii) “End-to-end learning for audio is an impossible endeavour”. It

existed the idea that for end-to-end learning to be viable, much

more computing power and training data were required.

(iii) Public research institutions (like our university) were severely

concerned by the computing power and data resources required

to do competitive research on artificial neural networks.

Although the field of artificial neural networks for music and audio

has advanced significantly, it is interesting to see how these ideas

are still very present. For example, note that (i) ongoing research is

exploring which deep learning architectures are more suitable for mu-

sic and audio signals (Ravanelli and Bengio, 2018; Won et al., 2019);

(ii) recent works are exploring the possibilities of end-to-end learn-

ing for (music) audio (Llúıs et al., 2018; Stoller et al., 2019); and

(iii) research institutions are moving forward for building the required

infrastructure (data & computing power) for carrying out competi-

tive deep learning research (Fonseca et al., 2017; Stöter et al., 2018).

We frame our work in that context, and our aim is to contribute

towards answering these research questions that the field is facing:

(i) Which deep learning architectures are most appropriate for

(music) audio signals?

(ii) In which scenarios is waveform-based end-to-end learning feasible?

(iii) How much data is required for carrying out competitive deep

learning research?
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1.1. SCOPE OF OUR WORK: AUDIO TAGGING

1.1 Scope of our work: audio tagging

Provided that music audio tagging (i) is a challenging task due to

how variate the target tags can be, and (ii) a collection of readily

available datasets and established baselines are available, we decided

to set the music audio tagging task as our main study case. Besides,

we observed that many of the scientific challenges that music audio

tagging faces (those are listed in Chapter 2) are also relevant for

the general audio tagging case. For that reason, we also explore the

general audio tagging setting to study how these technologies behave

with different data. Hence, throughout this dissertation two main use

cases are studied:

• Music Audio Tagging: these systems aim at predicting musi-

cally relevant tags from the audio signal. Examples of those

can be meter tags (e.g., triple-meter, cut-time), rhythmic tags

(e.g., swing, syncopation), harmonic tags (e.g., major, minor),

mood tags (e.g., angry, sad), vocal tags (e.g., male, female, vocal

grittiness), instrumentation tags (e.g., piano, guitar), sonority

tags (e.g., live, acoustic), or genre tags (e.g., jazz, rock, disco).

• General Audio Tagging: these systems aim at predicting acous-

tically relevant tags from the audio signal. Examples of those

can be acoustic events (e.g., air conditioner, car horn, drilling,

gunshot, siren), animal sounds (e.g., dog bark, birds chirp-

ing, pig oink), human sounds (e.g., fart, male/female speech),

acoustic scenes (e.g., lakeside beach, forest path, metro-station,

office), or even music sounds (e.g., guitar, trumpet, rock).
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1.2. OUTLINE OF THE THESIS

1.2 Outline of the thesis

In the following, we provide an overview of what is presented along

with this thesis. Our main experiments and contributions can be

summarized as follows:

• We propose to use musically motivated CNNs for

music audio tagging. Within this context, the CNN filters

we employ are designed to fit specific musical concepts that are

of relevance for the task at hand. Hence, the design strategy

we propose heavily relies on musical/audio domain knowledge.

With this work, our goal is to investigate which architectures

are more appropriate for modeling music signals with deep

learning. We found that musically motivated CNNs strongly

regularize the solution space. This can be beneficial in scenarios

where few training data are available. However, this can over-

constrain the solution space in scenarios where sizable amounts

of training data are available. Still, for most scenarios, mu-

sically motivated CNNs perform similarly to its counterparts

while requiring less computational resources and being more

interpretable.

More details on musically motivated CNNs are in Chapter 3.

• We investigate to use non-trained (randomly weighted)

CNNs as feature extractors for audio tagging. With the

goal to compare classification accuracies when using different

randomly weighted CNN feature extractors, we use the features

extracted from the embeddings of deep architectures as input

to a classifier. Given that the performance delivered by random
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1.2. OUTLINE OF THE THESIS

CNN features is correlated with the results of their end-to-end

trained counter-parts (Saxe et al., 2011), we can bypass the

time-consuming and hardware-consuming process of training

for evaluating a given neural network architecture. By following

this methodology, we run a comprehensive evaluation of the

current deep architectures for audio tagging.

To know more about the method we employed and the results

we obtained, see Chapter 4.

• We investigate how several music audio tagging deep

architectures perform at scale. We study how different

deep architectures perform when trained with datasets of vari-

able size: the MagnaTagATune (25k songs), the Million Song

Dataset (240k songs), and a private dataset of 1.2M songs.

We compare musically motivated CNNs with SampleCNNs, a

waveform-based end-to-end learning model by Lee et al. (2018).

These are representative of two opposite design strategies: one

heavily relies on domain knowledge while the other does not.

Our results suggest that models relying on domain knowledge

play a relevant role in scenarios where no sizable datasets are

available. However, given enough data, those end-to-end learn-

ing models not relying on domain knowledge can achieve better

results — possibly because its solution space is not constrained

by strong assumptions regarding the nature of the signal or task.

More details about this study are available in Chapter 5.

• We investigate how to train neural network-based gen-

eral audio taggers with few data. In particular, we study

whether a) a naive regularization of the solution space, b) pro-

6
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totypical networks, c) transfer learning, or d) their combina-

tion, can foster deep learning models to better leverage a small

amount of training examples. Results indicate that transfer

learning is a powerful strategy in such scenarios. However,

transfer learning assumes that a pre-trained model is readily

available. Importantly, such model needs to be pre-trained with

similar data to the few samples that are accessible for training.

When these data do not match, we show that prototypical net-

works trained from scratch can be the right choice.

To know more about prototypical networks, transfer learning,

or for further details about this study, see Chapter 6.

As seen, we centered our efforts in trying to provide answers to these

fundamental research questions we identified along with our intro-

ductory discussion (that we present in Chapter 2).
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Chapter 2

Neural networks for music:

an introductory journey

through their history

Many feats have happened between the pioneering papers written by

J. P. Lewis and Peter M. Todd in the 80’s and the current wave of

generative adversarial networks’ composers. Along that journey, the

connectionists’ work was forgotten during the artificial intelligence

winter, very influential names (like Juergen Schmidhuber, Yann Le-

Cun or Andrew Ng) contributed with seminal publications and, in

the meantime, researchers have made tons of progress.

The goal of this chapter is to provide an historical introduction to

the field of artificial neural networks for music. We won’t go through

every single paper in the field, but we’ll cover what are the milestones

that helped to shape the current state-of-the-art. In the following, we

will be first introducing the basic building blocks of modern artificial

neural networks to later discuss how these have been historically used
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for music informatics. Along with that discussion, we will also intro-

duce music use cases to help the reader understand the possibilities

(and limitations) of current artificial neural networks for music.

2.1 Introduction to artificial neural net-

works for music

This section introduces the basic building blocks of modern artifi-

cial neural networks for music. Provided that most of these mod-

els can be explained as a combination of several well-established ar-

chitectures, along that section we outline the most used ones: the

multilayer perceptron (MLP), convolutional neural networks (CNNs),

recurrent neural networks (RNNs, or its LSTMs variant), and atten-

tion. The goal of these models is to approximate some function of

interest. For example, to build a music genre classifier, such function

ŷ = f(x) maps an audio input x to a genre category ŷ. Or, as an-

other example, ŷ = f(x) can map a music mixture x into a separated

singing-voice solo track ŷ to build a singing voice source separation

model. In other words, artificial neural networks are powerful models

capable to parameterize rather complex mapping functions that we

express as ŷ = f(x;θ), where θ represent the set of learnable param-

eters of a model.

The goal of this section is to cover the basics of the field. For that

reason, we might intentionally omit some of the models’ details since

our intention is to guide the reader through the process of learning

the set of intuitions required to effectively understand artificial neural

networks for music. Additional details can be easily found in the

original references that we list along with the text.
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In that section, we first introduce the foundations of the learn-

ing algorithms used for training artificial neural networks from data,

and then we discuss the pros and cons of each architecture. To allow

a better understanding on the usability of artificial neural networks

for music, we also include practical music examples to further il-

lustrate which are the merits of each architecture. For example, in

Section 2.1.8 we discuss the suitability of the introduced architectures

when using spectrogram inputs, a highly performant and widely em-

ployed input setup (Dieleman and Schrauwen, 2014; Choi et al., 2017a).

2.1.1 Training artificial neural networks

The quintessential algorithm for training neural networks is stochas-

tic gradient descent (SGD). Although this algorithm does not guar-

antee to reach a global minimum when optimizing non-convex error

functions (like it happens to be when training deep neural networks),

SGD works well in practice. SGD updates the model parameters’ θ

as follows (Robbins and Monro, 1951):

θi+1 = θi − µi∇e(θi). (2.1)

The i sub-index denotes the sequential nature of the training algo-

rithm, where the parameters are updated iteratively following the

above equations. To start, θi parameters are (randomly) initialized

and the backpropagation algorithm (Rumelhart et al., 1986) finds the

update direction ∇e(θi) by means of computing the gradient of the

error function with respect to the parameters to optimize. Note that

the parameter updates follow the negative direction pointed by the

gradient, which is the direction having the steepest descent. Finally,
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µi (known as the learning rate) is a scalar that controls how much

the parameters θi are updated. Although SGD is mostly used for su-

pervised learning1 —because it is easy to compute the error e(y, ŷ)

between the target and the prediction—, SGD can also be used for un-

supervised learning.2 In these scenarios, a common trick is to use the

reconstruction error e(x, x̂) to inform training (Bretan et al., 2017).

To further discuss how to train artificial neural networks, let’s

consider the music genre classification example introduced above. We

want to use this example to remark that SGD is stochastic: it ran-

domly selects a subset of the training data (a batch) to compute the

gradient that guides learning. For each update, we will first run the

audio examples (a batch) through the model to estimate the corre-

sponding genre labels ŷ = f(x;θi). Considering these estimates, the

backpropagation algorithm (Rumelhart et al., 1986) uses the errors

e(y, ŷ) to compute the gradients — that are averaged across the batch

to compute ∇e(θi). Once ∇e(θi) is known, the model parameters’ θi

can be updated accordingly. Note, then, that SGD updates θi every

batch. To conclude, we want to note that it exists several SGD ex-

tensions that are widely used. Some iconic ones are the momentum

variant (Rumelhart et al., 1986) or adam (Kingma and Ba, 2014),

that are based on the same iterative principle as SGD.

After introducing how to train artificial neural networks, we de-

vote the rest of Section 2.1 to present the most popular artificial

neural network architectures that can be used to define ŷ = f(x;θ).

1Supervised learning aims at learning to predict a target y given x: p(y|x).
2Unsupervised learning aims to learn the distribution of the data x: p(x).
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2.1.2 Multilayer perceptrons

The basis of modern artificial neural networks is the perceptron, that

infers a prediction out of the following equation (Rosenblatt, 1957):

ŷ = σ(0)(W(0)x + b(0)). (2.2)

Although the perceptron is a single-layered linear model (with L = 0),

modern neural networks are generally formed by more than one hid-

den layer. These deep perceptrons having more than one hidden layer

are also known as multilayer perceptrons (MLPs, with L ≥ 1). For

example, for L = 2 the MLP is defined as follows:

ŷ = σ(2)(W(2)h(2) + b(2)) (2.3)

h(2) = σ(1)(W(1)h(1) + b(1)) (2.4)

h(1) = σ(0)(W(0)x + b(0)), (2.5)

where the predicted output is ŷ ∈ <doutput , σ(l) can be any activation

function, the weight matrices are W(l) ∈ <d(l)×d(l−1) , the bias vector is

b(l) ∈ <d(l) , and the input is x ∈ <dinput . Latent representations (out

of the hidden layers) are in h(l), and l stands for the index of the

current layer (ranging from 0 ≤ l ≤ L). Further, the dimension d

can be different in each layer, input, and output — that’s why d(l)

is denoted with the l sub-index. Each layer is characterized by a

non-linear activation function σ(l), that can be layer specific. Popu-

lar activation functions σ(l) are the sigmoid, the tanh or the rectified

linear unit (ReLU). The above equations assume 1D inputs, but any

input signal can be fed to the model by simply reshaping. For exam-

ple, a 2D spectrogram can be reshaped into a 1D vector.
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We have seen that MLPs predict an output via computing a

weighted average considering all its input, note that W(l) interacts

with the whole input signal (either x or h(l)). As an example on the

usage of MLPs, let’s say we aim to predict whether an audio contains

music or speech. In this scenario, and assuming that our latent h(2)

representation contains relevant features like timbre and/or loudness,

we want to weight with W(2) the relevance of these h(2) features to

predict (ŷ) whether our input contains music or speech. Note that the

same rationale also applies to the lower layers of the model, where this

weighted average would help defining more discriminative features.

2.1.3 Convolutional neural networks

Convolutional neural networks (CNNs) are simply neural networks

that use convolutional operators in place of matrix multiplications

in at least one of their layers (LeCun et al., 1989). The discrete 1D

convolution operation used in CNNs is defined as follows:

s[n] ∗ w[n] =
∞∑

m=−∞

s[m] · w[n−m]. (2.6)

And the 2D variant of the convolution is as follows:

s[x, y] ∗ w[x, y] =
∞∑

m1=−∞

∞∑
m2=−∞

s[m1,m2] · w[x−m1, y −m2], (2.7)

where w[n] or w[x, y] shifts, and interacts with the signal s[n] or s[x, y]

in a multiplicative-add fashion. To better understand the convolu-

tion, in the following lines we introduce examples to further discuss

its behaviour.
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CNNs replace any MLP layer with a convolutional layer:

h
(k)
(l) = σ(l)(W

(k)
(l) ∗ h(l−1) + b(l)). (2.8)

Or, in case where a CNN is used as input layer (the first layer), the

above equation translates to:

h
(k)
(1) = σ(0)(W

(k)
(0) ∗ x + b(0)). (2.9)

Where the convolutional operator is capable to deal with 1D or 2D

signals, and each of the k CNN filters W
(k)
(l) capture a local context.

For example: if we consider a 2D spectrogram input x ∈ <T×F , the

filters W
(k)
(0) ∈ <i×j will model a local context of i × j (where i ≤ T

and j ≤ F ).3 Note that a MLP can be implemented with a CNN

having filters of the following shape: i = T and j = F . As seen, each

CNN filter defines a local feature. Consequently, out of a CNN layer

with k filters, one has k feature maps h
(k)
(l) that preserve locality.

To further understand this behavior, let us consider a basic 1D

convolution example. For simplicity, we will omit the non-linearity

σ(0) and the bias term b(0) to focus on the core convolutional opera-

tion: W
(k)
(0) ∗ x ≈ h(1). In our example, we will make use of a single

filter of length two:

W
(k=0)
(0) = [1,−1]. (2.10)

However, in practice, the filter weights’ W
(k)
(l) won’t be hard-coded

but will be learned. Since we utilize a single CNN filter, the output

will be composed of a single feature map — see Figure 2.1.

3T and F stand for the number of time frames and frequency bins in a spec-
trogram, respectively.
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(a) 1D input signal x. (b) 1D feature map ≈ h(1).

Figure 2.1: Simplification of the CNN model to understand its

intuition. We set h(1) ≈W
(k)
(0) ∗ x, and W

(k=0)
(0) = [1,−1].

The filter W
(k=0)
(0) = [1,−1] shifts along the temporal-axis to compute

the difference between two consecutive samples. In other words: for

every filter shift, we multiply the two consecutive samples of interest

by 1 and -1 to later add those. Consequently, the output is zero if

these two consecutive samples hold the same value. Otherwise, the

feature map will reflect the magnitude of their difference. In our

example one can see that, differently from MLPs, CNNs preserve

locality : the feature map displays where these differences occur.

Given the nature of the convolution operation, that shifts CNN

filters throughout the signal, these layers are particularly useful to en-

code representations that are time-invariant (in 1D signals like wave-

forms) or time-frequency invariant (in 2D signals like spectrograms).

For that reason, CNNs tend to be used in lower layers of the model4

because these are powerful at encoding relevant local stationarities —

like sinusoids in waveforms (Dieleman and Schrauwen, 2014; Lee

et al., 2018), or timbral traces in spectrograms (Pons et al., 2017b).

Finally, this example also showcases the importance of the shape

of CNN filters. In our rather simplistic example, the filter only con-

siders a context of two data points to inform its output. This local

context is arbitrarily defined, according to our goal, when defining

4Including the input layer.
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the shape of the CNN filter: i× j. For example, a historical setup for

waveform inputs has been to set such context to 512× 1 (length = 512),

similarly to the way we design an analysis window for the STFT (Diele-

man and Schrauwen, 2014).

2.1.4 Recurrent neural networks

Arguably, temporal dependencies (at different time scales) are of im-

portance when modeling music computationally. Recurrent neural

networks (RNNs) seem a reasonable fit towards modeling those, since

RNNs can explicitly encode temporal dependencies (Elman, 1990).

That is because its latent representation h
(t)
(1) does not only depend

on the current time-step t: h
(t)
(1) = f(x(t)), but also depends on the

previous time-step: h
(t)
(1) = f(h

(t−1)
(1) ,x(t)). For that reason, RNNs have

been historically used to model time-series. The traditional formula-

tion of RNNs (known as vanilla RNNs) is as follows:

ŷ(t) = σ(1)(W(1)h
(t)
(1) + b(1)) (2.11)

h
(t)
(1) = σ(0)(W(0)x

(t) + Wrech
(t−1)
(1) + b(0)), (2.12)

where Wrec ∈ <d(l)×d(l) denotes the recurrent weights that ex-

plicitly encode temporal dependencies. Note that ŷ(t) remains the

same as in Eq. 2.3, only h
(t)
(l) changes to be recursive. Although for

this example we only considered a single-layered RNN (L = 1), one

can stack several RNN layers (L > 1) that can even be set to encode

opposite temporal directions. For example, a bi-derectional RNN

considers representations from the past h(t−1) and from the future

h(t+1) (Schuster and Paliwal, 1997).
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Note that adding the recursive connection Wrec seems a promising

step towards modeling the long-term temporal dependencies that are

so relevant in music. However, this goal is still far beyond our reach.

Unfortunately, RNNs have difficulties in learning long-term depen-

dencies due to the “vanishing/exploding gradient” problem (Bengio

et al., 1994). Although it is out of our scope to deeply discuss this

phenomenon, to follow our discussion it will suffice to know that the

long-term dependencies are hardly reachable at time t because latent

representations at time t − n are only accessible via a problematic

path defined by Wrec. See in Eq. 2.12 that to access h(t−n) at time

t one needs to recursively go through Wrec in a multiplicative fash-

ion for n steps: ≈Wrec
nh(t−n). Consequently, if Wrec values are too

small: Wrec
nh(t−n) will vanish. And, if Wrec values are too big:

Wrec
nh(t−n) will explode. Although for this didactic simplification

we assume that the learning phase already occurred, this problem

actually takes place during training: the gradients used for guiding

the learning are dominated by Wrec
n and these can vanish or ex-

plode (Goodfellow et al., 2016).

2.1.5 Improving recurrent neural networks: LSTMs

In short, RNNs cannot learn long-term dependencies because these

access to past information via a problematic path defined by Wrec.

A practical solution to this problem is to allow direct paths from the

past. LSTMs, a RNN variant, explored this solution via defining a

state representation (s(t)) that explicitly carries information from the

past (s(t−1)).5

5s(t) and s(t−1) are defined in the following page.
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LSTMs are defined as follows (Hochreiter and Schmidhuber, 1997):

Input : i(t) = σ(Wx(t) + Wrech
(t−1) + b) (2.13)

State : s(t) = g
(t)
i i(t) + g

(t)
f s(t−1) (2.14)

Output : h(t) = σ(s(t))g(t)
o (2.15)

While the path to the past coming from Wrech
(t−1) (as defined in i(t))

is again multiplied by Wrec, the other path to the past g
(t)
f s(t−1)

(as defined in s(t)) is directly accessible — one just needs to bypass

a sigmoidal gate g
(t)
f . We omitted the layer sub-indices l for clarity,

and the σ(·)’s in Eq. 2.13 and 2.15 can be any non-linearity, but the

tanh(·) is oftentimes used (Hochreiter and Schmidhuber, 1997).

Note that the input representation formulation i(t) is the same

as the traditional RNN; the state representation decides what’s im-

portant to keep: if “present” (i(t)) or “past” information (s(t−1)); and

the output representation is to control what’s visible from the output.

This behavior is controlled by a set of sigmoidal gates: g
(t)
i (that reads

the input), g
(t)
f (that forgets from the past), and g

(t)
o (that writes to

the output), that are defined as follows:

Gates : g
(t)
? = σ(b? + W?x

(t) + Wrec?h
(t−1)), (2.16)

where the ? sub-index is a placeholder for i (standing for input),

f (standing for forget), and o (standing for output). Note, then, that

each gate has independent parameters (i.e., Wi 6= Wf 6= Wo).

Finally, it is important to remark that LSTMs (or similar gated

recurrent models like the GRUs by Cho et al. (2014)) are the RNNs

that most practitioners use because these actually work in practice.
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2.1.6 Attention-based artificial neural networks

An alternative approach to model temporal relationships in music

signals is to pay attention to different time positions. The attention

idea is again based on allowing direct paths from other (potentially

distant) time-steps. In this case, these representations are obtained

via a weighted average (through time) that considers information

from any time position (Bahdanau et al., 2014):

h
(t)
(l) =

T∑
n=0

α(t,n)h
(n)
(l−1), (2.17)

thus meaning that at time t one can directly access to any h
(n)
(l−1),

where n ∈ [0, T ] and T is an arbitrarily defined time horizon. Note

that each h
(n)
(l−1) is weighted by an α(t,n) matrix with time independent

attention weights (normalized through time by a softmax):

α(t,n) = softmax
(
b(t,n)

)
=

eb(t,n)∑T
k=0 eb(t,k)

, (2.18)

and the b(t,n)’s are dynamically estimated by a function f(·) that

considers some context c(t,n) to inform its prediction:

b(t,n) = f(c(t,n)). (2.19)

For example, such context could be set to: f(h
(t)
(l−1),h

(n)
(l−1)). This

meaning that the amount of attention α(t,n) allocated at time t would

be estimated considering the information available at time t and at

time n. However, one can define this context in manifold ways (Raffel

and Ellis, 2016; Raffel, 2016). Furthermore, ongoing research is also

looking at different ways to set f(·), e.g., it could be set to be any
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operation like the dot product or it could be learnt (Bahdanau et al.,

2014; Huang et al., 2019; Raffel, 2016).

As seen, we defined the α(t,n) attention weights so that they dy-

namically depend on the actual content that is being analyzed —

this kind of attention is also known as self-attention. In short, self-

attention models relate different positions of the same input sequence.

Provided that all the attention-based models for music published

till date utilize self-attention, throughout this article we will indis-

tinctly use the terms attention and self-attention (Raffel, 2016; Huang

et al., 2019). Although alternative attention mechanisms could be

used (Bahdanau et al., 2014), the attention models we discuss are

designed to dynamically pay attention (with larger α(t,n) weights) to

the most important parts of its input.

2.1.7 Attention vs. RNN

As we will see in Section 2.3, RNNs and attention-based artificial neu-

ral networks have been vigorously used for algorithmic music compo-

sition (Todd, 1988; Eck and Schmidhuber, 2002; Huang et al., 2019).

The most common way to utilize those models for composing music

is to set them as single-step predictors: they learn to predict notes at

time t+ 1 using earlier notes (at times ≤ t) as inputs. After training

has finished, those models are primed with an input music seed to

generate a new output. Each output is sequentially fed back as input

to the model for generating consecutive outputs in an autoregressive

fashion. In order to facilitate the task of composition, these models

directly operate over scores. The symbolic music data that is often

used in algorithmic music composition (e.g., MIDI scores) is generally

represented as a sequence of discrete tokens (e.g., one-hot vectors)

that encode the notes in a suitable format for neural networks.
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The algorithmic music composition case we described above is

particularly interesting when comparing attention-based models vs.

RNNs, because a music piece generally contains local motives and

global structure. For example: a compelling song might incorpo-

rate local motives that might be repeated in different sections, which

creates a sense of coherence and global structure. Having that in

mind, which artificial neural network seems more appropriate for

the algorithmic music composition task? Differently from RNNs (or

its LSTMs variant), attention-based artificial neural networks have

the capacity to capture long-term dependencies by design. While

attention-based models can arbitrarily access to any time position in

the past and/or in the future to inform a decision, RNNs or LSTMs

cannot. Although LSTMs provide a direct path to a stored memory

state, this direct temporal link cannot guarantee the access to any

(potentially distant) time-position. At this point, it might be clarify-

ing to reveal what LSTM means: Long Short-Term Memory. Hence,

the name itself reflects the limits of this architecture, that it can only

learn short-term dependencies that are long. Provided that long-term

dependencies are of relevance in music, it seems a natural fit to utilize

attention-based models to capture those with neural networks. By

following a similar rationale, the algorithmic music composition liter-

ature arrived to equivalent conclusions that align with our discussion.

The early approaches were using vanilla RNNs (Todd, 1988). Later,

LSTMs were introduced as a way to improve the global coherence

of the generated pieces (Eck and Schmidhuber, 2002), and current

state-of-the-art models are exploring to use attention-based artificial

neural networks (Huang et al., 2019).
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2.1.8 Sectrogram-based artificial neural networks

The building blocks of modern deep learning architectures are the

multilayer perceptron (MLP), convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and attention. We have seen that

MLPs compute a prediction considering all its input, that CNNs pre-

serve locality by computing filter-selective feature maps, that RNNs

can capture short-term temporal dependencies, and that attention

can capture long-term temporal dependencies. In Figure 2.2 we ex-

emplify all these intuitions graphically with a spectrogram example.

Provided that spectrogram inputs are widely used due to their good

performance in several music tasks of relevance —including auto-

tagging (Pons et al., 2018), source separation (Jansson et al., 2017)

or transcription (Southall et al., 2017)—, we introduce this discussion

to guide the reader through the process of designing a state-of-the-art

artificial neural network.

Before all else, spectrograms need to be pre-processed and nor-

malized so that neural networks can deliver a good performance. A

common setup consists of using log-mel spectrograms, and to normal-

ize those to be zero-mean and unit-var (Choi et al., 2018b). The mel

mapping reduces the size of the input by providing less resolution to

the perceptually irrelevant parts of the spectrogram (Stevens et al.,

1937), and the logarithmic compression reduces the dynamic range of

the input. Finally, the zero-mean and unit-var normalization centers

the data around zero, which facilitates process (Glorot and Bengio, 2010).

When a MLP is employed, all its input is used to compute a

weighted average output. This means that for every output one

needs to learn as many weights as spectrogram bins are visible in

the input (see equations in Section 2.1.2). Consequently, for high
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dimensional data like spectrograms, it does not seem a good idea to

use MLPs since the resulting model can easily become huge and one

might inquire the risk of overfitting. A common solution to this issue

consists in using CNNs when processing high-dimensional data like

spectrograms.

(a) All spectrogram bins are used
to compute MLP outputs.

(b) The black area represents the
receptive field of a CNN filter.

(c) The RNNs’capacity to model
long-term dependencies is limited.
Its capacity decreases with time.

(d) Attention-based models can
encode long-term dependencies
from the future and the past.

Figure 2.2: Spectrograms (vertical axis: frequency – horizontal axis:
time) to graphically illustrate the merits of each artificial neural network
architecture. The vertical red line in (c) and (d) denotes an arbitrary time-
step t where we want to utilize additional temporal information. Black
and green lines illustrate how reachable is each time-step: the higher the
line, the higher the amount of information that can be employed by the
model at time t. The black line in (c) shows the attention weights’ α(t,n)

values at time t.
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Figure 2.2b depicts the receptive field of a vertical CNN filter ca-

pable to encode timbral traces. The black area (the receptive field)

can be interpreted as the number of parameters to be learned by

this model. Hence, it is not difficult to understand that the size

of the model is significantly reduced when using CNNs (only the

black area vs. all the spectrogram bins). A direct consequence of

having a smaller model is that it might have more chances to gen-

eralize. CNN models are smaller because the convolution operation

shifts CNN filters horizontally and vertically throughout the spectro-

gram. Consequently, for spectrogram-based CNNs, the filter weights

are shared across time and frequency. The arrows in Figure 2.2b de-

note the horizontal and vertical shifts performed by the CNN. Since

spectrogram-based CNNs convolve across time (horizontal shift) and

frequency (vertical shift), these can capture representations that are

time and frequency invariant by construction (Pons et al., 2017b).

Figure 2.2c graphically illustrates how RNNs are not able to learn

long-term dependencies due to the “vanishing/exploding gradient”

problem. We highlight this phenomena with the black & green lines

above the spectrogram, where we showcase the amount of past & future

information that could be employed by a RNN at time t (denoted by

the red vertical line). Note that one can feed future information into

RNNs by simply changing the temporal direction we look at: for

example, by changing h(t−1) → h(t+1) in Eq. 2.12. In contrast, Fig-

ure 2.2d shows that for a given time t an attention-based model can

employ information from any time position along the spectrogram.

Note the black line above the spectrogram, where we show the atten-

tion weights’ α(t,n) values. The weighted average mechanism (through

time considering the α(t,n) values) employed by the attention models
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enables a direct path where long-term dependencies can flow. Finally,

we want to remark that the shapes of the black and green lines in

figures 2.2c and 2.2d were invented just for didactic purposes.

Although in previous paragraphs we assumed single-layered mod-

els processing spectrograms and discussed each architecture sepa-

rately, these are normally stacked one on top of the other to construct

deep models. For example, a common pipeline consists of (i) stack-

ing several CNN layers to extract local features from spectrograms,

(ii) RNNs or attention are used to aggregate the CNN feature maps

across time, and (iii) the temporally aggregated signal is used to

predict what’s intended with a MLP. Note that this deeper pipeline

allows to learn musical characteristics at different time-scales, and to

take advantage of the merits of each architecture (Raffel, 2016; Choi

et al., 2017a).

2.2 History of artificial neural networks

Neural networks are a machine learning technique that is often as-

sociated with artificial intelligence (AI) due to its capacity to learn

in a data-driven fashion, without heavily relying on human domain

expertise. Possibly due to that, many people erroneously interchange

these two terms. However, it is undeniable the contribution of neural

networks to the field of AI. For that reason, and to provide some

context to the reader, before diving into the history of neural net-

works for music (in Section 2.3), we first review which are the main

historical contributions of neural networks to the field of AI.
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2.2.1 Birth of AI & the first AI winter:

the 60’s and 70’s

The term artificial intelligence (AI) was proposed at a workshop held

in Dartmouth College in 1956 to discuss computers, natural language

processing, neural networks, theory of computation, abstraction and

creativity (McCarthy et al., 1955). Provided that it is where the field

coined its name, this workshop is considered the birthplace of AI.

Important names assisted to this rather small (11 attendees) influ-

ential meeting: Minsky, Mackay, Shannon, Newell, or Simon, among

others. Starting from this historical milestone, we will go through

the most influential articles on artificial neural networks till date

(see the black-listed items in Figure 2.3 for a graphical depiction of

the chronology we will cover).

The early days of AI were an era of discovery and optimism, what

motivated private and public agencies to raise funding for research.

One of the first highly influential inventions in the field was the per-

ceptron. It was proposed by Rosenblatt (1957), and it is the basis

of modern artificial neural networks. However, after several years of

research, their outcomes were far from the original expectations. An

illustrating example can be the work by Minsky and Papert (1969),

who found that a simple XOR function cannot be implemented by

a perceptron (a state-of-the-art model back in the 60’s).6 Provided

that their actual technology was behind everyone’s expectations, the

research funding started to decrease delving AI researchers into their

first winter.

6One actually needs a more expressive model like a MLP to implement a XOR
function (that is not linearly separable).
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Figure 2.3: Chronology of the most influential articles in neural
networks (in black) for music (in red).

2.2.2 Connectionists & the second AI winter:

the 80’s and 90’s

It was not until the 80’s that AI strikes back. The main success

of this generation was to use “expert systems” to solve task-specific

problems with symbolic AI. These systems were able to solve im-

portant practical challenges via restricting themselves to a small do-

main of specific knowledge where is possible to craft the knowledge-

base required for most symbolic AI systems (Feigenbaum, 1981).
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Besides the actual success of “expert systems”, novel ideas around

neural networks were introduced at that time. During this decade,

CNNs (Fukushima and Miyake, 1980) and RNNs (Hopfield, 1982)

were invented. And, importantly, the backpropagation algorithm was

proposed to train MLPs (Rumelhart et al., 1986). This last contri-

bution was particularly relevant because via enabling the training of

multi-layered (deep) neural networks, the field could get over the lim-

itations of the perceptron and, e.g., artificial neural networks can be

trained to learn the XOR function. These people working on neural

networks during the 80’s are known as connectionists, a term moti-

vated by the nature of neural networks (where several simple units

are connected to build a powerful model). However, the computing

power required to successfully train these models was not yet avail-

able, what severely limited the possibilities of connectionists. For

that reason, during the following years, connectionists entered in a

second AI winter.

During the 90’s, other competing methods have dominated the

field of machine learning. A prominent alternative were, and still are,

the support vector machines (SVMs) by Cortes and Vapnik (1995).

These are powerful classifiers that tend to perform competently while

being “small” (with few trainable parameters). In contrast, artificial

neural networks tend to be significantly “larger”, which makes them

hardware demanding and prone to overfitting. Hence, the resources

required to train SVMs are much less than for artificial neural net-

works, what implied a practical advantage during the 90’s. However,

SVMs assume that the input data is linearly separable (Cortes and

Vapnik, 1995). In order to fulfill this requirement as much as possible,

the SVMs’ input is generally formed by a set of carefully selected fea-
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tures. Differently from SVM classifiers, artificial neural networks can

jointly learn the feature extractor and the classifier, which reduces the

amount of human domain expertise required to build SVM classifiers

(relying on engineered features). Unfortunately, though, the comput-

ing power required for successfully training “large” artificial neural

network with the capacity to learn a feature extractor + classifier

was not yet available during that decade, what favored the suc-

cess of SVMs.

2.2.3 Deep learning: the early 2000’s

In short, deep learning models are multi-layered artificial neural net-

works. However, training these can be intricate. Although the back-

propagation algorithm (employed to train deep neural networks) was

proposed during the 80’s (Rumelhart et al., 1986), there were some

practical issues that made deep neural networks difficult to train. For

backpropagation to work, it was required to carefully initialize θ and

to sensibly search along several hyper-parameters (Glorot and Ben-

gio, 2010). Hence, training deep neural networks was prone to failure

because there was no clear understanding of how on systematically

train those.

As seen, two main obstacles were limiting the wide adoption of

deep artificial neural networks: (i) they were difficult to train, and

(ii) not much computing power was available at that time. An en-

couraging solution for the first challenge came by Hinton et al. (2006),

who proposed a method that allows to systematically train deep ar-

tificial neural networks. Their method is based on a layer-wise unsu-

pervised pretraining schema that enables to properly initialize deep

artificial neural networks. As a result of having a reasonable θ initial-
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ization, deep neural networks are now easier to train and can work

in practice. The solution to the second challenge came in the form of

parallel computing with GPUs. Krizhevsky et al. (2012) won a pres-

tigious image classification competition by a large margin using deep

CNNs. One of their keys to success was to develop a GPU implemen-

tation that enabled them to scale up the problem of training deep

artificial neural networks. These two seminal papers (Hinton et al.,

2006; Krizhevsky et al., 2012) are considered the start of the deep

learning era, that heavily impacted many fields and stimulated very

creative work in the area of neural networks. For example: attention-

based artificial neural networks were recently proposed in the context

of machine translation (Bahdanau et al., 2014), or modern generative

models are now capable to produce appealing images and structured

text (Brock et al., 2019; Radford et al., 2019).

2.3 History of artificial neural networks

for music

After reviewing the main historical milestones in artificial neural net-

works research, now is time to dive into the history of neural net-

works for music. The red vertical bars in figures 2.3 and 2.4 depict

the number of papers on artificial neural networks for music that

were published throughout the years.7 On it, we can clearly identify

two main regions: the connectionists era (1988-2009), and the deep

learning era (since 2009). In the following, we will outline their main

contributions.

7https://github.com/ybayle/awesome-deep-learning-music
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2.3.1 Connectionists era: from 1988 to 2009

During the second AI winter, a series of spurious work maintained

the field’s relevancy from 1988 to 2009. This is the contribution of

the so-called connectionists to the field of artificial neural networks

for music, a work that is pretty much unknown to most contemporary

researchers.

The first wave of work was initiated in 1988 by J. P. Lewis and

Peter M. Todd, who proposed the use of artificial neural networks

for automatic music composition. On the one hand, Lewis (1988)

used a MLP for his algorithmic approach to composition called “cre-

ation by refinement”. That is, in essence, based on the same idea

as DeepDream8: utilizing gradients to create art. On the other

hand, Todd (1988) experimented with auto-regressive RNNs to gen-

erate music sequentially. Many people kept using this same auto-

regressive principle throughout the years. Among them: Eck and

Schmidhuber (2002), who proposed using LSTMs for sequential algo-

rithmic composition; or, to consider a more recent work, the Wavenet

model (van den Oord et al., 2016) —which is capable of generating

music directly in the waveform domain— also makes use of this same

sequential (causal) principle. Hence, the old connectionist ideas that

Todd and Lewis introduced back in the 80’s for algorithmic compo-

sition are still valid today. But, if their principles were correct, why

did they not succeed? In Lewis’ words: “it was difficult to compute

much of anything”. While a modern GPU may have more than 100

tflops of theoretical performance, a VAX-11/780 (the workstation he

used back in 1988 for his work) had 0.1 mflops.

8https://github.com/google/deepdream
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But let’s go back to discuss the work of Eck and Schmidhuber

(2002). In their paper “Finding temporal structure in music: blues

improvisation with LSTM”, they try to address one of the major is-

sues that algorithmically composed music had (and still has): the lack

of global coherence or structure. To address this challenge, they pro-

posed the use of LSTMs — which are supposedly better than vanilla

RNNs at learning long temporal dependencies. Note, then, that as

a result of this experimentation, music has been one of the early ap-

plications of LSTMs (Hochreiter and Schmidhuber, 1997). However,

interestingly, Eck and his collaborators have recently moved from

using LSTM-based models to attention-based ones for algorithmic

composition (Huang et al., 2019). They found that their attention-

based model can learn “long-term structure” that “captures global

timing, giving rise to regular phrases”, what confirms how powerful

are attention-based models for learning long-term dependencies in

music (see Section 2.1.7 for further details on this discussion).

Although most connectionists were working on algorithmic music

composition, some researchers also explored other music tasks. Laden

and Keefe (1989) did some work on chord classification with MLPs,

where they were classifying chords (e.g., the C major chord: C-E-G)

into chord types (major, minor, and diminished). And Dannenberg

et al. (1997) studied how to use MLPs to classify MIDI scores into

music styles like “syncopated” or “pointillistic”. As a consequence,

automatic music composition, chord recognition and music classifica-

tion are the first musical tasks that were ever addressed with artificial

neural networks.

As seen, an important trend among connectionists was to work

with symbolic music data. However, there were some remarkable
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exceptions. Matityaho and Furst (1995) explored for the very first

time to work with spectrograms. Their goal was to distinguish be-

tween pop and classical music with MLPs. And Marolt et al. (2002)

used spectrograms for the task of note onset detection with MLPs.

These early works were operating on top of spectrograms, a rela-

tively low level signal, as a way to jointly learn the feature extractor

and the classifier with MLPs. After those publications (Matityaho

and Furst, 1995; Marolt et al., 2002) a new research period started:

a race had begun to be the first to address any task in an end-to-

end learning fashion — what means learning a mapping system (or

learnable function) able to solve a task directly from a low level rep-

resentation of the signal, ideally from the waveform. Solving a task

directly in the raw audio (waveform) domain would allow removing

any pre-processing step, enabling to minimize the amount of human

intervention and the assumptions done with respect to the input sig-

nal. Note that the more computing power and data are available for

training, the more effective these models are at processing lower level

signals (like waveforms or spectrograms). In Figure 2.4 we graphi-

cally depict this trend: since 1988 it was common to utilize symbolic

music data (Todd, 1988; Lewis, 1988); in 1995 researchers started us-

ing lower level signal representations (like spectrograms) as input to

their models (Matityaho and Furst, 1995); and it was not until 2014

that someone successfully trained an end-to-end model employing

raw audio data (Dieleman and Schrauwen, 2014).

That said, connectionists were not only interested in using arti-

ficial neural networks for end-to-end learning. Another (very popu-

lar) line of research was to utilize artificial neural networks as clas-

sifiers (Kaminsky and Materka, 1995; Kostek and Krolikowski, 2014;
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Herrera-Boyer et al., 2003). One important focus of these works was

to carefully select useful features for the task at hand. Provided that

these engineered features are discriminative for a given task, artifi-

cial neural networks can be employed as classifiers. Consequently,

the resulting models can be smaller and more tractable. As a re-

sult, many explored the use of artificial neural networks as classifiers

throughout the years. The early works on classification were mostly

on instrument recognition: Kaminsky and Materka (1995) build a

classifier that its main feature was the energy envelope; and Kostek

and Krolikowski (2014) used a richer set of features containing spec-

tral and temporal descriptors (e.g., brightness, energy of the har-

monics, or attack-time). Besides instrument classification, the con-

nectionists also addressed other tasks with artificial neural network

classifiers. For example, Soltau et al. (1998) build a genre classifier

based on cepstral features.

raw audio data: the waveform

engineered features: like spectrograms

symbolic data: like MIDI scores, or notes
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Figure 2.4: Data format trends in artificial neural networks for music.
The more computing power and data are available for training, the more

effective these models are at processing lower level signals.
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2.3.2 Deep learning era: since 2009

Around 2009, the second AI winter ended for music technologists

and the first bunch of deep learning works started to impact the

field. As one can observe in Figure 2.3, after the deep learning era

began, the field of artificial neural networks for music has grown

exponentially. During that time, researchers started to successfully

tackle more complex problems —like music audio tagging (Lee et al.,

2009; Dieleman and Schrauwen, 2014), chord recognition (Humphrey

and Bello, 2012), or source separation (Chandna et al., 2017; Llúıs

et al., 2018)— with deep artificial neural networks.

One first influential work of the deep learning era was by Lee et al.

(2009), who build the first deep spectrogram-based CNN for music

genre classification. This is the foundational work that established

the basis for a generation of deep learning researchers who spent great

efforts designing CNN models to better recognize high-level concepts

from music spectrograms.

However, not everyone was satisfied utilizing spectrogram-based

models. For example, Dieleman and Schrauwen (2014) explored the

ambitious research direction of end-to-end learning in music audio.

They were the first to investigate waveform-based models for the task

of music audio tagging. Although they demonstrated some degree of

success, spectrogram-based models were still superior to waveform-

based ones. At that time, not only were the models not mature

enough, but also the training data was scarce when compared to the

amounts of data now some companies have access to. For example,

a recent study run at Pandora Radio shows that waveform-based

models can outperform spectrogram-based ones provided that enough

training data are available (Pons et al., 2018).
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Another historically remarkable piece of work comes from Humphrey

et al. (2013), who convinced LeCun to co-author the deep learning

for music manifesto. In their article, the authors convey the power

of learning deep representations from data. Interestingly, they ar-

gue that the community was already employing deep features. For

example, the widely used MFCCs features (based on the discrete co-

sine transform of the log-mel power spectrogram) are already a deep

representation, in the sense that several layers of transformations are

required to compute those features (Davis and Mermelstein, 1980).

Broadly speaking, we have structured the connectionists’ work

into two main application areas: (i) music information retrieval,

which aims to design models capable to recognize the semantics

present in music signals; and (ii) algorithmic music composition, with

the goal to computationally generate new appealing music pieces.

These two application areas are still very active, and have been a sub-

ject of research during the deep learning era. Recent deep learning

works in (i) music information retrieval are still pushing the bound-

aries of what’s possible via improving the architectures that define

these models (Pons et al., 2016b; Lee et al., 2018). But actual re-

searchers do not only intend to improve the performance of such

models. They are also studying how to increase their interpretability,

or how to reduce their computational footprint (Pons et al., 2017b).

Furthermore, as previously mentioned, there is a strong interest in

designing architectures capable to directly deal with waveforms for a

large variety of tasks. However, researchers have not yet succeeded

in designing a generic strategy that enables waveform-based models

to solve a wide range of problems — something that would allow, for

example, the broad applicability of end-to-end audio classifiers (Lee
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et al., 2018). The area of (ii) algorithmic music composition has also

been very active during the deep learning era. Remember that back

in the 80’s (Lewis, 1988; Todd, 1988) and during the early 2000’s (Eck

and Schmidhuber, 2002), rather simplistic auto-regressive neural net-

works were used. But now is the time for attention-based artificial

neural networks (Huang et al., 2019), and modern generative mod-

els like generative adversarial networks (Goodfellow et al., 2014a) or

variational auto-encoders (Kingma and Welling, 2013). Interestingly

enough, these modern generative models are not only being used to

compose novel scores in symbolic format, but models like waveform-

based generative adversarial networks (Donahue et al., 2019; Engel

et al., 2019) or Wavenet (van den Oord et al., 2016; Engel et al., 2017)

are also being used to explore novel timbral spaces or to render new

songs directly in the waveform domain (as opposed to composing

novel MIDI scores).

As seen, most connectionists’ works were processing symbolic mu-

sic data. During the connectionists era only baby steps were done in

the direction of end-to-end learning, and just a few works (Matityaho

and Furst, 1995; Marolt et al., 2002) explored to directly process

spectrograms with artificial neural networks — most possibly due to

hardware and data limitations. However, during the deep learning

era, end-to-end learning models are becoming more and more pop-

ular. For example, end-to-end learning is enabling novel ways to

approach the music source separation problem (Cano et al., 2019).

The music source separation task consists in estimating the original

music sources (multi-track recordings) from a mixture, and a common

approach consists in filtering the mixture signal with time-frequency

masks that are predicted by an artificial neural network (Jansson
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et al., 2017; Chandna et al., 2017). Consequently, most source sepa-

ration techniques employ spectrogram-based models, and are there-

fore (by default) omitting part of the signal: the phase. Interestingly,

end-to-end learning allows to address these historical challenges via

bypassing the problem. By operating directly on the waveform do-

main, the model can take into account all the information available

in the raw audio signal (including the phase), and also allows to move

beyond the current filtering paradigm (Stoller et al., 2018; Llúıs et al.,

2018). But we can also observe this trend in other tasks of relevance

like in automatic music transcription. This task is particularly chal-

lenging because it comprises several subtasks; including multipitch

estimation, onset and offset detection, instrument recognition, beat

and rhythm tracking, interpretation of expressive timing and dynam-

ics, and score typesetting (Benetos et al., 2019). A traditional ap-

proach to automatic music transcription would consist in designing

specialized subsystems for each of the subtasks, to later put all the

pieces together. Instead, end-to-end learning brings the opportunity

to directly map music audio into music notation without explicitly

modeling most of the subtasks described above (Vogl et al., 2017;

Southall et al., 2017; Hawthorne et al., 2018).

Unfortunately, a limitation of end-to-end systems is that these

require large amounts of training data to perform reasonably (Pons

et al., 2018; Stöter et al., 2018) — what limits the applicability of this

approach in many scenarios. For that reason, many successful deep

learning models are built on top of engineered features (like spectro-

grams) (Choi et al., 2018b). By using a higher-level input representa-

tion of the signal, the available training data is not employed to learn

low-level features but to directly learn how to address a task from an
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already informative feature. In other words, the input restricts the

solution space in a way that data can be used more efficiently to

just solve the task (e.g., to classify music genres from already dis-

criminative audio features). Another direction to address the data

scarcity issue consists of tailoring these models towards learning so-

lutions closer to what humans perceive. For example, by designing

musically or perceptually inspired deep learning architectures (Pons

et al., 2016b; Ravanelli and Bengio, 2018). These approaches aim

to place the model close to a plausible solution (having the gener-

alization power of known priors) to employ the training data more

efficiently. As seen, until large corpus of annotated audio are not

available for research, many are exploring to restrict the solution

space of deep learning models so that these have more chances to gen-

eralize with unseen data. Additionally, researchers are exploring the

use of data augmentation and unsupervised learning for accessing to

virtually infinite amounts of training data. While data augmentation

techniques have already been successfully used by many (Schlüter

and Grill, 2015; McFee et al., 2015; Miron et al., 2017), it does not

exist a consensus on how to efficiently leverage unlabeled data with

unsupervised learning (Lee et al., 2009; Slaney et al., 2008; Freitag

et al., 2017).

2.4 Summary and conclusions

Before diving into the history of neural networks for music, we have

introduced and discussed the main artificial neural network architec-

tures from the perspective of a music technology practitioner. We

observed that deep neural networks are a suitable tool for modeling
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music computationally. Music is hierarchic in frequency (note, chord,

etc.) and in time (onset, rhythm, etc.), and deep neural networks nat-

urally allow for this hierarchic representation since their architecture

is hierarchical due to its depth. Furthermore, relationships between

events in the time domain are important for modeling music. To this

end, we have seen how attention-based models can capture long-term

dependencies (e.g., music structure or music motives) while CNNs

and/or RNNs can model the local context (e.g., timbral traces, on-

sets or rhythm patterns). However, besides the above conceptual

motivation, during these last years a vast amount of empirical results

are also showing the potential of using deep neural networks for mu-

sic (Huang et al., 2019; Pons et al., 2018; Stöter et al., 2018; van den

Oord et al., 2016; Stoller et al., 2019). As a result, the core techniques

used in the field of music informatics have moved from feature en-

gineering to deep learning (Humphrey et al., 2013). In concordance

with that, the number of publications using artificial neural networks

for music has grown exponentially (see the red bars in Figure 2.3).

Later, we reviewed the history of artificial neural networks for

music — that can be divided into two periods: the connectionists

era (1988-2009), and the deep learning era (since 2009). Besides the

technical innovations that enabled scientific progress in the field, we

noted that artificial neural networks require a significant amount of

data and computing power to be competitive. While back in the con-

nectionists era the computing constraints were severely limiting the

outcome of artificial neural networks research, hardware restrictions

are no longer limiting the deep learning generation. However, strong

resource asymmetries exist between the industry and the academy.

While industry labs seem to build on top of abundant resources, aca-
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demic institutions are slowly building the required infrastructure for

deep learning. An important asset for this public infrastructure are

the datasets. Building public datasets for easy benchmarking is of

capital importance to enable and to measure progress in the field.

Despite the recent initiatives on building public datasets for general

audio tagging (Fonseca et al., 2017; Gemmeke et al., 2017) or music

source separation (Rafii et al., 2017), it still exists the need of build-

ing large datasets for a variate set of tasks (Cano et al., 2019; Benetos

et al., 2019; Mueller et al., 2019).

We also described an “end-to-end learning trend” among deep

learning researchers, who are currently exploring the possibilities of

this idea. If possible, end-to-end learning enables interesting map-

pings from waveform-to-classes , or even from waveform-to-waveform.

Hence, it is time to re-define what’s possible and what’s not. Arti-

ficial neural networks are now enabling tools and novel approaches

that were previously unattainable, and important tasks like music

audio tagging (Pons et al., 2018; Lee et al., 2018), music source sepa-

ration (Llúıs et al., 2018; Stoller et al., 2018; Pons et al., 2016a), au-

tomatic music transcription (Vogl et al., 2017; Southall et al., 2017),

or algorithmic music composition (Dieleman et al., 2018) are now

being revisited from the end-to-end, deep learning, perspective.

Current efforts are also centered in exploring innovative ways to

put the pieces together. For example, artists are using artificial neu-

ral networks as an instrument for creativity: to create novel timbral

spaces (Engel et al., 2017), or to assist the music creation process with

automatically rendered compositions (Huang et al., 2019). Besides,

innovative uses of artificial neural networks can also lead to new ways

for humans to interact with music (Goto and Dannenberg, 2019). For
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example, deep learning greatly facilitates working with multi-modal

data. In part, because these powerful data-driven models can learn

the relations between the different music modalities in an end-to-end

fashion. Following this direction could, e.g., enable enriched musi-

cal experiences where audio excerpts, videos, and editorial metadata

could be jointly represented in a shared cross-modal space where

a user could query additional information like upcoming concerts,

videos, lyrics, or the biography of an artist (Mueller et al., 2019).

2.5 Contributions

Throughout our research, we identified two important literature gaps

that aim to be covered along with this introductory chapter: (i) the

lack of a historical review covering the field of artificial neural net-

works for music; and (ii) the lack of a music-specific approximation

to the field of artificial neural networks.

We consider that an introductory journey through the history of

artificial neural networks for music can be useful for beginners to

understand which are the historical challenges, the current state-of-

the-art and its limitations, and possible future directions. For this

reason, we also prepared a blog-post9 to further disseminate the above

introduced history of artificial neural networks for music.

9 www.jordipons.me/neural-networks-for-music-history/
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Chapter 3

Musically Motivated CNNs

for music tagging

A common criticism of deep learning relates to the difficulty in un-

derstanding the underlying relationships that neural networks are

learning. Consequently, these are generally considered “black-boxes”

that are challenging to interpret. In this chapter, we explore var-

ious architectural choices of relevance for music signals in order to

gain intuition towards understanding what the chosen architectures

are learning. To motivate the design strategy we propose, we first

discuss how CNN filters with different shapes can fit specific musical

concepts (see Section 3.1) and, based on that, we propose several

musically motivated architectures. Despite the efforts on trying to

puzzle out what the networks are learning, it is still not clear how

to navigate through the network parameters space. It is hard to dis-

cover the adequate combination of hyper-parameters for a particular

musical task, which leads to architectures being difficult to inter-

pret. Given this, our work aims to rationalize the design process by
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proposing musically motivated architectures. To this end, we study

how CNNs can be tailored towards learning generalizable musical

concepts, as a way to study which deep learning architectures can be

most appropriate for modeling music computationally.

As a proof of concept, in Section 3.2 we assess the proposed de-

sign strategy. For this first experiment, we evaluate several CNNs

(designed to learn temporal and timbral representations) against a

dataset that is known for having classes that are well represented by

their tempo. Within that context, e.g., we can investigate weather

“temporal” CNNs achieve better results than “timbral” CNNs. With

this preliminary experiment, we note the potential of this approach

that we investigate further in Sections 3.3 and 3.4 — where we study

how to efficiently learn temporal & timbral representations with CNNs.

3.1 Introductory discussion:

CNN filter shapes are important

As seen in Chapter 2, several architectures can be combined to con-

struct a deep learning model. However, throughout this chapter we

focus on CNNs. Provided that our goal consists of tailoring deep

learning models towards learning musically relevant features, CNNs

seemed an intuitive choice given that most musically relevant fea-

tures are local (e.g., timbre, onsets, rhythm, or tempo). Furthermore,

CNNs fed with spectrograms allow to design CNNs filters having in-

terpretable dimensions in the first layer: time and frequency, what al-

lows designing musically motivated architectures. For these reasons,

and provided that spectrogram-based CNNs are widely used among

deep learning researchers (Choi et al., 2016; Schlüter and Böck, 2014),

we frame our discussion within that context.
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Regardless of the competitive results achieved and the conceptual

benefits of using deep learning approaches (see Chapter 2), we still

do not fully grasp what neural networks are learning. Back in 2016,

when we proposed this line of research, only few works tried to give

an explanation of what deep learning models were learning. For ex-

ample, Sander Dieleman1 did some work showing that higher-level

concepts can be identified from lower-level music representations. He

found that the first CNN layers of their music recommendation sys-

tem had filters specialized in low-level musical concepts (like vibrato,

vocal thirds, pitches, chords), whereas upper CNN layers had filters

specialized in higher-level musical concepts (like christian rock, chi-

nese pop, 8-bit). This matches with similar results found by the

image processing research community where lower layers are capable

of learning shapes that are combined in higher layers to represent ob-

jects (Zeiler and Fergus, 2014). Furthermore, Dieleman et al. (2011)

also proposed a deep learning algorithm that preserves musically sig-

nificant timescales (beats-bars-themes) within the architecture itself,

what “leads to an increase in accuracy” for music classification tasks

and gives an intuition of what the network may be learning, showing

that musically motivated architectures may be beneficial for model-

ing music computationally. Moreover, Choi et al. (2015) proposed a

method for auralisation —which is an extension of the CNNs visu-

alization method Zeiler and Fergus (2014)— that allows to interpret

by listening what each CNN filter has learned.

Due to the CNNs success in computer vision, its literature signif-

icantly influenced music technologists. For image processing, small

squared filters of 3×3 or 12×12 are widely used (He et al., 2016). As

1http://benanne.github.io/2014/08/05/spotify-cnns.html
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a result of that, music technology researchers tend to use similar filter

shape setups (Choi et al., 2016; Schlüter and Böck, 2014). However,

note that the image processing filter dimensions have spatial mean-

ing, while spectrogram-based filter dimensions correspond to time

and frequency. Therefore, wider filters may be capable of learning

longer temporal audio dependencies while higher filters may be ca-

pable of learning more spread timbral features. In order to motivate

researchers to be conscious about the potential impact of choosing one

filter shape or another, three examples and a use case are discussed

in the following. Throughout this chapter we assume the spectro-

gram dimensions to be M ×N and the filter dimensions to be m×n.

We center our discussion around the first CNN layer, where the filter

dimensions are interpretable. Hence, M and m stand for the number

of frequency bins and N and n for the number of time frames.

• Squared/rectangular filters (m× n filters) are capable of learn-

ing time and frequency features at the same time, and are

widely used by music technology researchers (Choi et al., 2016;

Schlüter and Böck, 2014). Such filters can learn different mu-

sical aspects depending on how m and n are set. For example,

the bass could be well modeled with a small filter (m � M

and n � N , representing a sub-band for a short-time) be-

cause this instrument is sufficiently characterized by the lower

bands of the spectrum, and the temporal evolution of the bass

notes is not so long. An interesting interpretation of such small

filters is that they can be considered pitch invariant to some

extent. Since the convolution also happens in the frequency

domain, such filters can be modulated to represent different

pitches. However, note that such pitch invariability would not
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hold for instruments having a large pitch range since the timbre

of an instrument changes accordingly to its pitch. As another

example, let’s consider the cymbals or the snare drums sound

sources. These could be suitably modeled by setting m = M

and n � N , because they are broad in frequency and have a

fixed decay time. Interestingly, a bass could also be modeled

with this filter — however, the pitch invariance interpretation

would not hold because its dimensions (m = M) would not

allow the filter to convolve along the frequency axis. Conse-

quently, pitch will be encoded together with timbre.

• Temporal filters (1× n). By setting the frequency dimension

to m=1, such filters won’t be capable of learning frequency

features — but will be specialized on finding relevant tempo-

ral cues to address the task at hand. However, although the

filters themselves are not learning frequency features, deeper

layers may be capable of exploiting frequency cues (since the

frequency interpretation still holds for the resulting activations

because the convolution operation is done bin-wise with m=1).

Musically speaking, one expects those temporal filters to learn

rhythmic/tempo patterns within the analyzed frequency band.

• Frequency filters (m× 1). By setting the time dimension to

n=1, such filters won’t be capable of learning temporal fea-

tures — but will be specialized in modeling the frequency fea-

tures that are relevant for the task at hand. Similarly as for

the temporal filters, upper layers could still find some temporal

dependencies from the resulting activations. From the musical

perspective, one expects these frequency filters to learn pitch,

timbre or equalization setups, for example.
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Moreover, we would like to discuss Choi et al. (2015) results’ as

a use case.2 They trained a 4-layer CNN of squared 12× 12 fil-

ters to address the task of music genre recognition. After auralis-

ing and visualizing the learnt filters’, they conclude that their deep

learning model was capable of: finding attack/onsets, selecting bass

notes and separating kick drums. As previously discussed, squared

small filters may be capable of modeling instruments appearing in

a sub-band (e.g., bass and kick), and also to model temporal fea-

tures (e.g., onsets) due to its length. Also, it is not surprising that

they did not found the trained CNN to model, e.g., cymbals or

snare drums — what may be definitely challenging to be modeled

by a CNN with such small filters.

3.2 Proof of concept: the ballroom dataset

After noting the potential impact of choosing one CNN filter shape or

another, in this section we explore how these ideas can be translated

into an actual design strategy that allows using our domain expertise

on music-spectrograms to inform our choices when designing CNNs.

Our goal is to guide spectrogram-based CNNs towards learning

musically relevant representations by carefully designing the filter

shapes in the first layer. In that way, the proposed CNNs can effi-

ciently capture the local context that is relevant for the task at hand.

As a direct consequence of approaching the CNNs’ design in that way,

we will see that (i) the learnt CNN filters are more interpretable, and

(ii) the number of learnable parameters can be greatly reduced (what

might increase the generalization capabilities of the learnt models in

scenarios where few training data are available).

2http://keunwoochoi.blogspot.com.es/2015/10/ismir-2015-lbd.html
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Motivation: audio material

This proof of concept is realized using the Ballroom dataset.3 It con-

sists of 698 tracks, of around 30 seconds long, divided into 8 music

genres: cha-cha-cha, jive, quickstep, rumba, samba, tango, viennese-

waltz and slow-waltz (Gouyon et al., 2004). This dataset is particu-

larly interesting (i) due to its small size, and (ii) because its classes

are highly correlated to tempo. This allows studying the impact

of employing musical domain knowledge (e.g., knowing that tempo-

ral cues are important) in these scenarios where no large datasets

are accessible for training. Even though this dataset was originally

designed for rhythmic patterns classification, Gouyon et al. (2004)

already showed in the original dataset publication that Ballroom

classes are rather well characterized by their tempo. Note that a

k -nearest neighbor on top of BPM annotations achieves 82.3% accu-

racy. Hence, tempo and rhythm are relevant cues when predicting

Ballroom classes. Inspired by this data characteristic, our proof of

concept consists in evaluating several musically motivated CNNs de-

signed to capture temporal and timbral features — to assess weather,

as one might expect, the former outperforms the latter.

Besides, this dataset has been extensively used. For example,

Marchand and Peeters (2016) achieved 96% accuracy — and we set

this algorithm as baseline for our deep learning methods using time

and frequency cues. However, not all our models employ time and

frequency cues as Marchand and Peeters (2016). One of our models

(Time) is designed to focus on temporal cues. In this case, to allow

a fair comparison, we set the k -nearest neighbor by Gouyon et al.

(2004) as baseline: 82.3% accuracy. Besides, we also propose another

3http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
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architecture (Frequency) that is designed not to focus on temporal

cues. Provided that temporal cues are of importance to predict Ball-

room classes, we do not expect this model to perform competently.

In this case, we set a random baseline based on the probability of

guessing the most likely class: cha-cha-cha (15.9%).

Experimental setup

The audio is fed to the model through fixed-length log-mel spectro-

grams that are N frames wide. Interestingly, Dieleman and Schrauwen

(2014) used raw audio waveforms as input to their deep neural net-

work and found that the lowest CNN layer was learning “frequency-

selective features covering the lower half of the spectrum” — what

motivates our choice, since mel filter-banks allocate more frequency

resolution to the lower parts of the spectrum. Besides, log-mel spec-

trograms are widely used as input to neural network classifiers be-

cause these tend to perform competently (Dieleman et al., 2011; Choi

et al., 2015). Throughout this work we use 40 mel bands derived

from a STFT-spectrogram computed with a Blackman Harris win-

dow of 2048 samples (50% overlap) at 44.1 kHz. A dynamic range

compression is applied to the input mel spectrograms in the form of

log(1+C ·x), where C = 10.000 is a constant controlling the amount

of compression (Dieleman and Schrauwen, 2014). The resulting spec-

trograms are normalized so that the whole dataset spectrograms (to-

gether) have zero mean and variance one. Note that this normaliza-

tion is not attribute-wise, as this would perturb the relative informa-

tion encoded between spectrogram bins/frames. Three architectures

are proposed to experiment with musically motivated CNNs:

(i) Black-box architecture: is based on previous work using
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CNNs for the task of music/speech classification (Lidy, 2015).

In this setup (that obtained the best results of the MIREX

2015 task on music/speech classification4), a single CNN layer

with fifteen 12× 8 filters and a 2× 1 max-pool layer had been

used, followed by a feed-forward layer of 200 units connected to

an output softmax layer. We adapted this approach to further

get better results by slightly changing the previous setup to

thirty-two 12× 8 filters and a max-pool layer of 4× 1.

Figure 3.1: The Black-box architecture.

(ii) Time architecture: is designed to learn temporal represen-

tations. It is composed of a CNN layer of 32 temporal filters

(1×n) followed by a max-pool layer of (M×1) connected to an

output layer. The fact that the max-pool layer spans all over

the frequency axis (m=M ) and covers only one frame (n=1 ),

allows to only encode temporal content (due to the summariza-

tion done along the frequency axis) and to preserve the frame

resolution, respectively.
4http://www.music-ir.org/mirex/wiki/2015:Music/

/Speech Classification and Detection Results
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(iii) Frequency architecture: is designed to learn frequency rep-

resentations. It is composed of a CNN layer of 32 frequency

filters (m × 1) followed by a max-pool layer of (1 × N) con-

nected to an output layer. The max-pool layer (with n=N )

operates similarly as in the Time architecture, but in that case

the summarization is in time. Note that the extreme case of a

Frequency architecture would be to input only one frame. How-

ever, we expect the statistics provided by the max-pool layer

to help the network learning better timbral representations.

Figure 3.2: The Time architecture.

Figure 3.3: The Frequency architecture.
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The Black-box architecture follows a standard architecture that one

could find in the literature back in 2016 (Choi et al., 2015; Schlüter

and Böck, 2014). We call it Black-box because there is no musically-

relevant reason for such architectural choices. Note that the learnt

CNN filters are not straight-forward to interpret because there is not

apparent motivation behind their design. Time and Frequency are

introduced as musically inspired systems. These do not include any

additional feed-forward layer (as in the Black-box ) to keep the model

simple, and to show the potential of the proposed approach.

While the Time architecture may be capable of learning tempo

and rhythm features, the Frequency architecture will try to capture

relevant timbral cues. Considering that these neural networks are

trained using the Ballroom dataset (where the temporal cues are of

relevance), we expect the former one to outperform the latter.

Figure 3.4: The Time-Frequency architecture.
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Finally, we join in the same model the Time and Frequency archi-

tectures. To this end, we will select the Time and Frequency archi-

tectures that achieved better results in our preliminary experiments

(see Table 3.1). Figure 3.4 depicts a schema of this combined ar-

chitecture. The motivation behind this model is to join the Time

and Frequency architectures, that are learning complementary as-

pects from the data, to create a more expressive musically motivated

architecture. A feed-forward layer of 200 units is set on top of the

Time and Frequency architectures to allow the model to combine

time and frequency representations. We experiment with two setups,

learning from: (i) random initialization or (ii) weights initialized

with the previous Time and Frequency most successful models. We

refere to these architectures as (i) Time-Frequency and (ii) Time-

Frequency (pre-initialized), respectively. The Time and Frequency

parts in the Time-Frequency (pre-initialized) architecture are initial-

ized using the best Time and Frequency models, respectively. Each

initialization considers its corresponding model trained earlier in the

same fold to avoid training/testing with the same data.

How to set the hyper-parameters?

Previously, we argued in favor of several design choices by rationaliz-

ing the process of deciding which CNNs might be more appropriate

for the task at hand. In the following, we provide further discussion

to understand the potential impact of this (intuitive) design strategy.

For example, how to set the filter length in CNNs? One of our

goals is to model the relevant temporal dependencies present in the

Ballroom dataset. To this end, e.g., short temporal filters may have

difficulties for learning slow tempos. To study this phenomenon, we
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investigate two filter lengths for the Time architecture:

• 60 frames (≈ 1.4 sec). Only 1 beat can be learned by this filter

for the slowest tempo in the dataset: 60 BPMs. However, the

filter can learn ≈ 5 beats for the fastest tempo: 224 BPMs.

• 200 frames (≈ 4.6 sec). Up to 4 beats can be learned by this

filter at the slowest tempo in the dataset: 60 BPMs. However,

the filter can fit 17 beats for the fastest tempo: 224 BPMs.

For the Black-box architecture we study two filter lengths: n = 8 and

n = 200. The former is based on previous work where the filter shape

was optimized for estimating the Ballroom classes, while the latter

is motivated by the previous discussion. For experiments with n = 8

and n = 60, the input spectrogram is set to 80 frames. However, for

experiments with n = 200, the input is enlarged to 250 frames. Note

that as result of increasing the number of frames available for each

spectrogram, less spectrogram segments are sampled per track.

In addition, we want to provide further evidence and discussion

regarding the capacity of CNNs to learn pitch invariant representa-

tions. Intuitively, it seems beneficial to allow the filters to convolve

along with the frequency axis (m < M). In that way, these can learn

frequency features that are less pitch dependent. Consequently, the

resulting filters might be capable of learning more general concepts

like timbre, instead of notes. Within the Frequency architecture ex-

periments, we asses several frequency filter shapes (setting m differ-

ently) — to study the performance of these filters that are capable

to convolve along the frequency axis.
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Results & Discussion

In our experiments ReLUs are used as non-linearities with a final 8-

way softmax, where each output unit corresponds to a Ballroom class.

50% dropout (Srivastava et al., 2014) is used to train the feed-forward

layers. The output unit having the highest output activation is se-

lected to be the model’s class prediction. Each model is trained using

stochastic gradient descent, with minibatches of 10 samples, minimiz-

ing the categorical cross-entropy between predictions and targets. It

is trained using an initial learning rate of 0.01 and the learning rate

is divided by two every time the training loss does not improve for

40 epochs. The model reporting better accuracy in the validation set

is kept as the best model to be evaluated in the test set. All experi-

ments are developed using Lasagne (a Theano-based framework that

allows GPU acceleration) and are accessible online5.

Accuracies are computed using 10-fold cross validation, with a

randomly generated train-validation-test split of 80%-10%-10%. Since

the input spectrograms are shorter than the total length of the song

spectrogram, several estimations for each song can be done. A simple

majority vote approach serves to decide the estimated class.

Results are presented in Table 3.1, where we can observe that

the Black-box architecture reached inferior accuracy results than the

state-of-the-art result by Marchand and Peeters (2016): 96%. Be-

sides, we observe that the deep learning models can not achieve re-

sults beyond 88% accuracy. It might be that the training dataset is

too small (less than 1000 tracks) for such large models (with more

than 2M parameters) to learn representations that can generalize.

The Time architecture is capable of achieving similar results than

5http://github.com/jordipons/CBMI2016
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Gouyon et al. (2004), who achieved an accuracy score of 82.3% with

a k-nearest neighbor (with k=1) using the BPM annotations. This

result provides evidence that it is valuable to first understand what’s

in our training datasets. By doing so, researchers can utilize such

knowledge to design architectures that better fit the nature of their

problem. This is especially relevant for modeling music computa-

tionally, since it has already been pointed out that machine learning

algorithms are learning how to “reproduce the ground truth” rather

than learning musical concepts (Sturm, 2014). Designing deep learn-

ing architectures considering musical domain knowledge may reduce

that risk pointed by Sturm (2014), and will increase the capability of

the systems to learn musically relevant features.

Wider filters (n=200 ) do not estimate better the Ballroom classes

than shorter ones (n=60 ). This result is surprising because it seems

a challenging task, even for a human, to discriminate tempo and

rhythm with such short sounds — with less than 2 seconds. Two

plausible reasons exist to explain that shorter filters are estimating

better the Ballroom classes: (i) predicting the Ballroom classes does

not only mean to explicitly predict tempo/rhythm, and (ii) less train-

ing data is available.6 Exploring data augmentation paradigms may

be interesting to improve our results with longer filters. In fact, data

augmentation is a powerful tool where musically motivated choices

can be done. For example, Nam et al. (2015) proposed a method

called onset-based sampling, that samples tracks considering the onset

times instead of sampling arbitrarily. However, many other musically

inspired data augmentation strategies could be adopted: pitch shift-

ing (Salamon and Bello, 2017), time stretching (Schlüter and Grill,

6Remember: when using longer filters we need to input longer spectrograms
to the network, which decreases the number of sampled spectrograms per track.
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2015) or even re-mixing (Huang et al., 2015).

Interestingly, the Frequency architecture is capable of learning

discriminative frequency features from the data. It clearly outper-

forms its baseline (a naive system predicting the most likely class),

denoting that the frequency features are more relevant for predicting

Ballroom classes than expected. However, since this architecture was

not designed to learn temporal dependencies (that are important for

differentiating Ballroom classes), it does not outperform the others.

Moreover, designing the Frequency filters such that they can con-

volve in frequency (m < M), helps predicting the Ballroom classes.

This prevents the filters to learn individual pitches centering its ca-

pacity on modeling timbre, which allows the model to be more expres-

sive. Also, note that the performance improves until m is reduced

down to 32. We speculate that smaller filters (m < 32) may have

difficulties in learning timbral features. Finally, note that for the

Time architecture it also exists a similar idea to the “pitch invari-

ance” one that we discuss here. By allowing the filter to convolve

along time, the network is able to fit the filter at that point in time

where the beats are happening. Consequently, up to some extent,

these temporal filters can be considered time-position invariant.

The last block of experiments shows that the musically moti-

vated Time-Frequency architectures can achieve similar results as the

Black-box. However, Time-Frequency models have two advantages:

these are significantly smaller, and these are more interpretable. In

essence, having a smaller model (with less learnable parameters) in-

creases the capacity of the model to generalize with unseen data.

Besides, Time-Frequency architectures are more interpretable since

they were designed for having under control what the neural net-

61



3.2. PROOF OF CONCEPT: THE BALLROOM DATASET

work is passing through layers. Consequently, we expect these mu-

sically motivated architectures to be more treatable, as they should

allow researchers to dig into what the networks have learned in a

more intuitive way. Additionally, we found that the Time-Frequency

(pre-initialized) model estimates slightly better the Ballroom classes

than Time-Frequency, denoting that pre-initializing the model can

be beneficial — it allows to start the optimization problem closer to

a minimum with stronger generalization properties.

Finally, we also want to remark the importance of the training

datasets for deep learning experiments. The here presented proof

of concept was possible because the musical characteristics of the

Ballroom dataset are well known. This allowed us to address the ar-

chitectures and experiments design considering the available musical

domain knowledge we had at hand. Larger datasets with musicolog-

ical description are indeed necessary for the field to advance.

Interpretability

To further understand which might be the impact of using the pro-

posed design strategy, we also visualize the learnt filters. In Figure 3.5

we depict a representative selection of those.

On the left-hand side, we observe the 12× 8 filters of the Black-

box architecture. On those, we found three main patterns: (i) onsets,

(ii) harmonics, and (iii) others that we are not certain of what these

represent. It is interesting to observe how the filters modeling onsets

are clearly wasting the representational power that the vertical axis

of the filter is providing, because it just repeats the onset pattern

vertically. This behavior clearly denotes that the model is not em-

ploying the vertical capacity of these filters. And, on the other side, it
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Figure 3.5: The learnt representations when using
squared, vertical or horizontal CNN filters.

is also interesting to observe that the filters modeling harmonics are

just representing a part of what seems important to capture timbral

traces: these are modeling harmonic partials instead of capturing the

whole harmonic pattern that would encode timbral information.

On the top-right side, we observe long temporal filters. We found

some filters that were able to efficiently encode tempo and rhythmic

patterns (first and second filters). Some others were capturing low

energy components of the spectrum (third filter). And, interestingly,

some others were expressing onsets (fourth filter) in a rather inef-

ficient way — because note that with very short filters, of length

between 2-10, the model should be already capable to represent on-

sets more efficiently (with less learnable parameters).
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Finally, on the bottom-right side, we observe frequency filters.

As expected, some of those are capturing timbral traces (first and

second filters). For some others (like the third filter), it is not clear

what these are representing. However, provided that we know that

the vertical axis of the filter describes frequency content, we can

interpret that this filter is emphasizing some spectral bands. Note

that his kind of interpretations are harder to derive from the Black-

box model, since its filters do not necessarily represent a musically

relevant context. Finally, note that the last filter is sensible to the

parts of the spectrogram having low energy in high frequencies.

Throughout this analysis, we observed that it is hard to find the

appropriate filter shape so that it can efficiently represent all the mu-

sically relevant contexts present in spectrograms. Note, however, that

by composing the first CNN layer with many filter shapes (instead of

one single filter shape) would help to overcome this challenge. In the

following, we explore this possibility as a way to capture the diverse

set of musically relevant contexts that are present in music spectrograms.

Conclusions

Along this section, we studied spectrogram-based CNNs. An inter-

esting property of these models is that the dimensions of the first-

layer CNN filters are interpretable in time and frequency. We have

used this observation to discuss how several filter shapes can model

musically relevant contexts. By following this intuition, we proposed

several musically motivated CNNs and showed that these can achieve

competitive results on predicting the Ballroom dataset classes. These

preliminary results show the validity of the proposed approach, which

we further develop during the rest of this section.
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3.3 Learning temporal representations

After showing the viability of musically motivated CNNs in Section

3.2, our goal is to further investigate the possibilities of this approach.

Along this section, we focus on efficiently learning temporal represen-

tations (like tempo or rhythm) with CNNs.

While many researchers use CNNs with small rectangular filters

for music-spectrograms classification (Choi et al., 2016; Han et al.,

2017a), along that section (i) we discuss why there is no reason to

use this filters’ setup by default, and (ii) we point that more efficient

architectures could be implemented if the characteristics of music are

considered during the design process. Specifically, we propose a de-

sign strategy that might promote more expressive and intuitive deep

learning architectures by efficiently exploiting the representational

capacity of the first layer. We do so by using different filter shapes

adapted to fit relevant musical contexts within the first layer.

To allow a simple comparison with our previous results, the pro-

posed models are also trained with the Ballroom dataset.

Introduction

Due to the CNNs success in image classification, its literature sig-

nificantly influenced the music informatics research community —

that widely adopted standard computer vision CNNs for music clas-

sification (Choi et al., 2016; Phan et al., 2016; Han et al., 2017a).

As long as these CNNs were designed for computer vision tasks, it

seems reasonable that some researchers assume that audio events

can be recognized by seeing spectrograms (since these are image-like

time-frequency audio representations).

65



3.3. LEARNING TEMPORAL REPRESENTATIONS

The wide use of small rectangular filters in music classification (a

standard computer vision filter shape: m � M and n � N)7 states

how straight-forward music technology researchers adopted computer

vision CNNs (Choi et al., 2016; Han et al., 2017a; Schlüter and

Böck, 2014). Note that image processing filter dimensions have spa-

tial meaning while CNN-spectrogram filters dimensions correspond

to time and frequency. Therefore, wider filters may be capable of

learning longer temporal dependencies in the audio domain while

higher filters may be capable of learning more spread timbral fea-

tures. Hence, there is no strong motivation for using by default such

small rectangular filters for music deep learning research since some

relevant musical features (i.e.: rhythm, tempo or timbral traces) have

long temporal dependencies or are spread in frequency. This observa-

tion motivates the hereby study, where we consider the characteristics

of music for proposing filter shapes more suitable for music spectro-

grams. We hypothesize that music CNNs can benefit from a design

oriented towards learning musical features rather than seeing spec-

trograms.

Moreover, we have previously pointed (in Section 3.1) that small

rectangular filters can limit the representational power of the first

layer since these can only represent sub-band characteristics (with a

small frequency context: m�M)7 for a short period of time (with a

small time context: n� N)7. Hence, the network needs to combine

many filters (in the same layer and/or in deeper layers) in order to

model larger time/frequency contexts, what adds an extra cost to the

7Throughout this section we assume to use CNNs, with the input set to be
music spectrograms of dimensions M × N and the CNN filter dimensions to be
m×n. M and m standing for the number of frequency bins and N and n for the
number of time frames.
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network (wider layers and/or deeper networks). Therefore, if an in-

dividual filter can model a larger time/frequency context in the first

layer: (i) this might allow achieving a similar behavior without pay-

ing the cost of going wider and/or deeper; (ii) deeper layers are set

free to model such context — what may allow more expressive CNNs

at a similar cost since depth can then be employed for learning other

features; (iii) filters might be more interpretable since the whole de-

sired context would be modeled within one single filter on top of a

spectrogram (with clear dimensions: time and frequency); and (iv)

interpretable filters allows taking intuitive decisions when designing

CNNs in order to make an effective use of a reduced number of learn-

able parameters. From previous remarks one can observe that very

efficient8 CNNs can be conceived by enabling the first layer to model

larger contexts. Finally, note that given that some relevant musical

features have long temporal dependencies or are spread in frequency,

wide or high filters in the first layer (modeling larger time/frequency

contexts) might be able to efficiently represent these features. Hence,

the here proposed strategy ties very well with the previously de-

scribed need of proposing musically motivated filter shapes.

Our aim is to discover novel deep learning architectures that can

efficiently model music, which is a very challenging undertaking. This

is why we first focus on studying how CNNs can model temporal

cues, one of the most relevant music dimensions. By considering this

introductory discussion, in the following, we put emphasis on the

design of a single-layer CNN designed to efficiently model temporal

features to later assess its accuracy in predicting the genres of the

Ballroom dataset (Gouyon et al., 2004).

8This is the notion of efficiency we assume all through this publication.
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Architectures

It is common in deep learning to model temporal dependencies in se-

quential data with RNNs (Böck et al., 2015; Krebs et al., 2016). Two

successful methods that used RNNs for modeling temporal features

from music audio are: Böck et al. (2015) for tempo estimation, and

Krebs et al. (2016) for downbeat tracking. However, note that we

aim to study the capacity of CNNs for modeling temporal features.

Before moving forward, we want to discuss why RNNs are not consid-

ered for this study. CNNs are suitable for modeling short time-scale

temporal features. By modeling short time-scale features in the first

layer, deeper layers are set free for modeling other features. Hence,

if a RNN layer is stacked on top of a CNN that is modeling short

time-scale features (e.g., rhythm, tempo or onsets), such RNN can

focus on learning longer time-scale temporal features. This is why we

focus on the efficient modeling of short time-scale temporal features

with single-layer CNNs and we leave for future work modeling longer

time-scale temporal features with RNNs stacked on top of CNNs.

Some existing research has focused on using CNNs for modeling

temporal features, proposing innovative architectures: Durand et al.

(2016) used three parallel CNNs for modeling different music dimen-

sions; Phan et al. (2016) proposed using filters representing differ-

ent time-scales (setting n differently for every filter) with a max-pool

layer that spans all over time, operation that enables time-invariance;

and in Section 3.1 we proposed a light CNN for learning temporal

cues with wide filters (1×n) and max-pool frequency summarization.

Together with the above introduction, these works (Durand et al.,

2016; Phan et al., 2016; Pons et al., 2016b) conform our conceptual

basis for designing efficient CNN architectures.
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Short time-scale temporal features in music audio are fundamental

for describing several musically relevant concepts: onsets (e.g., attack-

sustain-release signatures define many instruments, and these are a

relevant cue for predicting genre), rhythm (e.g., can define a genre

like waltz) or tempo (e.g., some genres have faster tempos than oth-

ers). Note that different time-scales are required for modeling these

musical concepts. For example, for modeling onsets one requires a

shorter time-context than for modeling tempo or rhythm. If a long

filter is used for modeling onsets, most of the weights would be set

to zero: wasting part of the representational power of the filter (see

Figure 3.5). Therefore, and similarly as in Phan et al. (2016), we

propose setting different n’s for the filters in the first layer for being

able to efficiently represent several time-scale contexts.

We propose two complementary architectures meant to validate

the foundations of our design strategy, that promotes an efficient use

of the representational capacity of the first layer by using different

musically motivated filter shapes that model several (time-scale) con-

texts :

(i) O-net is designed to efficiently model onsets, a short time-

scale temporal feature. Different (short) filters of 1 × n followed

by a max-pool layer of 4 × N ′ 9 might be capable of capturing

in which frequency band a short time signature is occurring, with

n ∈ [6, 11, 16, 21, 26, 31, 36, 41]. The O-net consists on 5 filters for

each different filter length n. In total, there are 40 filters in the

same (first) layer.

9N’ and M’ denote, in general, the dimensions of any feature map. Therefore,
although the filter map dimensions will be different depending on the filter size,
we will refer to their dimensions by the same name: N’ and M’.
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(ii) P-net is designed to efficiently model short time-scale pat-

terns like rhythm or tempo. Different (longer) filters of 1×n followed

by a max-pool layer of 4×N ′ 9 might be capable of capturing in which

frequency band a time pattern is occurring, with n ∈ 46 + 5 · f
where f ∈ Z | 0 ≤ f ≤ 34 stands for the filter number. The P-net

consists on 35 filters of different length in the first layer ranging from

46 ≤ n ≤ 216.

Figure 3.6: O-net + P-net architecture.

We propose combining these architectures in parallel as in Du-

rand et al. (2016). As a result of that, the resulting model is shallow:

a single layer with many different filters. On top of this parallel com-

bination of CNNs (no matter which combination) we stuck a softmax

layer as output. Table 1 outlines the studied models, and Figure 3.6

depicts the O-net + P-net architectural combination. These filters

are combined by simply concatenating the resulting CNN feature

maps. Consequently, one needs to carefully set the architecture so

that the feature map dimensions have compatible shapes for concate-

nation. As a result, note that these models fulfill the specifications of

our design strategy: filter shapes are intuitively designed to represent

different relevant musical contexts using a reduced number of param-

eters in the first layer. Therefore, these models serve as test-bed to

validate the proposed design strategy.
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Filter and max-pool shapes discussion

We aim to investigate how CNNs can efficiently model short time-

scale temporal features in music audio spectrograms. For doing so

we propose using temporal filters (1 × n), that are a cheap filter

expression to model temporal features where the temporal context

can be easily adjusted by setting n. For example, faster patterns can

be better represented by shorter filters than slower patterns, what

allows minimizing the number of learnable parameters used for these

filters. But also note that shorter filter lengths can facilitate modeling

faster patterns, since shorter filters may better fit these patterns.

Therefore, in order to efficiently model different time-scales, different

filter lengths (n) are set. However, how to set the n’s appropriately?

We dimensioned them by defining nO and nP , that stand for the

longer n in O-net and P-net, respectively. nO is set to be the slowest

(longest) onset in the dataset and nP the slowest (longest) pattern.

We assume 6 beats to be enough to represent a temporal pattern and

therefore, the length of a P-net filter is determined by: n = 1+5·∆Fr
where ∆Fr ∈ Z stands for the number of frames between beats, a

frame-based inter-beat interval depending on the tempo (bpm). Note

that ∆Fr approximates the onset length for a given tempo. Given

that the slowest tempo in the dataset is of 60 bpm’s (Gouyon et al.,

2004) and the STFT-spectrogram is computed with a window of 2048

samples (50% overlap) at 44.1 kHz:

nO ≡ ∆Fr|bpm=60 =
44100× 60(sec)

60(bpm) × 2048× 0.5
= 43

nP ≡ 1 + 5 ·∆Fr|bpm=60 = 216
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Note that this result corresponds with the filter lengths proposed

for O-net : 1 ≤ ∆Fr ≤ 8 ≡ 6 ≤ n ≤ 41 ≤ nO and P-net : 9 ≤ ∆Fr ≤
43 ≡ nO ≤ 46 ≤ n ≤ 216 ≤ nP . As seen, the way we define nO

is arbitrary and depends on the dataset characteristics. Therefore,

it could be that for datasets with faster tempos some patterns are

learned by O-net. However this is not a capacity problem for the

model since five filters of equal length are available in O-net, what

enables learning onsets and patterns simultaneously (if necessary).

An alternative way of seeing the design process, that would cope

with the issue of O-net learning patterns, is to remove the distinction

between onsets and patterns. However, we argue that it is interesting

to define separately O-net and P-net since shorter filters are cheaper.

This allows adding extra learning capacity (filters) to O-net at a low

cost. This is why O-net (but not P-net !) includes 5 filters for each

different filter length.

Additionally, note that even though 1 × n filters themselves can

not learn frequency features, upper layers may be capable of learn-

ing frequency cues since the frequency interpretation still holds for

the resulting feature map because the convolution operation is done

bin-wise (m=1 ). Actually, this observation motivates the sub-band

analysis interpretation for the max-pool layer (4 × N ′), where the

most prominent activations of the 40 bins feature map are summa-

rized in a 10 bands feature map. Note that it is common among

music technology researchers to do sub-bands analysis for modeling

temporal features (Marchand and Peeters, 2014; Durand et al., 2016).

One can also note that the max-pool operation picks only the

most prominent activation all over the x-axis (N’ ) of the feature

map. This has two main advantages: (i) although the dimensionality
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of the feature maps vary depending on the length of the filters, after

pooling over N’ all the feature maps have the same x-axis size – one;

and (ii) the learnt features are time-invariant (Phan et al., 2016).

Experimental results

Experiments are realized using the Ballroom dataset that consists on

698 tracks of ≈ 30 sec long, divided into 8 music genres (Gouyon

et al., 2004). Two main shortcomings are regularly issued against

this dataset: (i) its small size and (ii) the fact that its classes are

highly correlated with tempo – although being proposed for evalu-

ating rhythmic descriptors. And precisely, the previously described

shortcomings motivate our study. Deep learning approaches rely on

the assumption that large amounts of training data are available to

train the large number of parameters of a network, and the data as-

sumption does not hold for most music problems. We want to study if

a CNN architecture designed to efficiently represent musical concepts

can achieve competitive results in a context where a small amount

of parameters is trained from a small dataset. The Ballroom dataset

provides an excellent opportunity for studying so, due to its reduced

size and because its classes are highly correlated with short time-

scale temporal features (tempo and rhythm). We exploit this prior

knowledge to propose and assess some small efficient musically moti-

vated architectures that might be capable of learning these temporal

features.

The audio is fed to the network through fixed-length mel spec-

trograms, N = 250 frames wide. It is set to 250 in order to fit

the longest filter in P-net : n = 216. Throughout this work we use

40 bands mel-spectrograms derived from a STFT-spectrogram com-
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puted with a Blackman Harris window of 2048 samples (50% overlap)

at 44.1 kHz. Phases are discarded. A dynamic range compression is

applied to the input spectrograms element-wise: log(1 +C ·x) where

C = 10.000 (Dieleman and Schrauwen, 2014). The resulting spec-

trograms are normalized so that the whole dataset spectrograms (to-

gether) have zero mean and variance one. The activation functions

are linear rectifiers (ReLUs) with a final 8-way softmax, where each

output unit corresponds to a Ballroom class. 50% dropout is applied

to the output layer. The output unit having the highest output acti-

vation is selected to be the model’s class prediction. Each network is

trained using gradient descent with a minibatch size of 50, minimiz-

ing the categorical cross-entropy. Networks are trained from random

initialization (with the same random seed) using an initial learning

rate of 0’01. A learning schedule is programmed: the learning rate is

divided by ten every time the training loss gets stacked until there is

no more improvement. The best model in the validation set is kept

for testing. Mean accuracies are computed using 10-fold cross vali-

dation with the same randomly generated train-validation-test split

of 80%-10%-10%. Since the input spectrograms are shorter than the

total length of the song spectrogram, several estimations per each

song can be done. A simple majority vote approach serves to decide

the estimated class for each song.

We cut the input spectrograms with overlapping, and the hop-size

is set differently depending on the experiment. Note that employing

overlapping input spectrograms can be seen as a data augmentation

technique. But also note that the smaller the hop size, the more

estimations per song are done at test time – what can be useful for

the majority vote stage.
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Results are compared with the state-of-the-art of the Ballroom

dataset (Marchand and Peeters, 2016), and against our best deep

learning-based results from Section 3.1: time, time-freq and black-box.

Marchand and Peeters (2016) is based on a scale and shift invariant

time/frequency representation that uses auditory statistics, not deep

learning. The time architecture has a single CNN layer with 1 × 60

filters (one filter shape in a single-layer CNN). Time-freq and black-

box have two layers: CNN + feed-forward and they differ in the filter

shape setup of the CNN layer. Time-freq uses 1 × 60 and 32 × 1

filters (two different filter shapes in the CNN layer) and black-box

uses small rectangular filters (one filter shape in the CNN layer). For

fair comparison against these models, two hop sizes are used: hop =

250, 80. When setting hop = N = 250, no input spectrograms overlap

is used — equally as in Section 3.1. However, the input spectrogram is

set smaller (N = 80) for the three previous deep learning approaches

and therefore, more training examples are available. In order to have

as many training examples as in Section 3.1, we also compare our

results when hop = 80 (although overlapping data is used). These

two setups (hop = 250, 80) provide a fair test-bed to compare our

results with the state-of-the-art.

Results are presented in Table 1. First, observe that for hop = 80

most of the here presented models (very small and shallow) can

achieve better performance than time, time-freq and black-box. Note

that the proposed models have a single CNN layer, and a large va-

riety of filter shapes in the first layer. But also observe that O-net

+ P-net architectures, having the most diverse combination of filter

shapes, are the best among the presented models. Therefore, these re-

sults validate the here proposed design strategy of adding musically
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Table 3.2: Mean accuracy results comparing different approaches pre-
dicting the Ballroom dataset classes. # params stands for the number of
learnable parameters of the model and hop for the hop-size when cutting

the input spectrograms with overlapping.

Model: hop #params accuracy

O-net 250/80 4,188 76.66/85.24%
P-net 250/80 7,428 83.95/89.26%
2x O-net 250/80 8,368 81.53/86.54%
2x P-net 250/80 14,848 85.67/89.11%
O-net + P-net 250/80 11,608 87.25/89.68%

2x O-net + 2x P-net 250/80 23,208 87.25/91.27%

4x O-net + 4x P-net 250/80 46,408 88.82/91.55%

8x O-net + 8x P-net 250/80 92,808 88.68/92.27%

Marchand and Peeters (2016) - - 96%
Time 80 7,336 81.79%
Time-freq 80 196,816 87.68%
Black-box 80 3,275,312 87.25%

motivated filters with different shapes (instead of having the same

filter repeated many times) in the first layer. Second, observe that

this design strategy is especially useful in circumstances when not

many training examples are available. Note that for hop = 250 big-

ger accuracy gains are achieved when more different filter shapes are

available (for example, compare O-net + P-net and 2x P-net). Since

adding different filter shapes is cheaper than doubling the capacity

of the network, the here proposed design strategy allows increasing

the representational power of the first layer at a very low cost. Ef-

ficiently using a reduced number of parameters (92,808 � 196,816

� 3,275,312) for modeling the main dimensions of a problem is a

straight-forward way of fighting overfitting in scenarios where small
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datasets and little computational resources are available. Third, note

that models containing P-net are the most successful ones. We spec-

ulate that this is because the most relevant features in this dataset

(rhythm and tempo) can be better encoded in P-net than in O-net,

as we hypothesized during the design process. And fourth, none of

the proposed models overcome the result by Marchand and Peeters

(2014). However, note the limitations of the here proposed models

(basically designed to model short time-scale temporal features and

to validate the proposed design strategy): only a limited amount of

1×n filters are used, within a single layer and with a limited amount

of data. In future work, we plan to increase the representational

capacity of the first layer by also using filter shapes designed to cap-

ture timbral traces, we want to stack more layers on top this efficient

CNN, and we want to use more data to train our models.

Conclusions

We have presented a CNNs design strategy that consists on model-

ing different (time-scale) contexts within the first layer with differ-

ent (musically motivated) filter shapes that are intuitively designed

to represent (musical) concepts. Our results show that this design

strategy is useful for fully exploiting the representational power of

the first CNN layer for learning temporal representations. These re-

sults provide an advance in: gaining intuition towards what CNNs

learn, efficiently adapting deep learning for music, and designing net-

works at a lower cost.
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3.4 Learning timbral representations

After studying how to learn temporal representations with CNNs, in

this section we study how to tailor CNNs towards learning timbral

representations from log-mel magnitude spectrograms.

To this end, we first identify which are the main trends when

designing CNNs. Along with this literature review we discuss what

might be crucial for efficiently learning timbre representations when

designing CNNs. From this discussion, we propose a design strategy

meant to capture the relevant time-frequency contexts for learning

timbre. Importantly, one of our goals is to design CNN architectures

that can efficiently capture timbral traces. By doing so, we aim to

reduce the number of learnable parameters of the proposed CNNs,

so that the over-fitting risk of these neural networks can be reduced.

Several architectures based on the design principles we propose are

successfully assessed for different research tasks related to timbre:

singing voice phoneme classification, musical instrument recognition

and music auto-tagging. The proposed architectures can achieve

equivalent results (if not better) to the state-of-the-art while signifi-

cantly reducing the number of learnable parameters of the model.

Introduction

Our goal is to discover deep learning architectures that can efficiently

model music signals. After showing in Section 3.3 that it is possible

to design efficient CNNs for modeling temporal music features (like

tempo and rhythm), we now focus on studying how to efficiently learn

timbral10 representations, one of the most salient musical features.

10In the following lines, we will provide a formal definition of timbre.
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Historically, music audio processing for timbre description has

been divided into two groups: (i) bag-of-frames methods and (ii)

methods based on temporal modeling. On the one hand, bag-of-frames

methods have been shown to be limited as they just model the statis-

tical distribution of frequency content on a frame basis (Porter et al.,

2015). On the other hand, methods based on temporal modeling

consider the temporal evolution of frame-based descriptors (Rabiner,

1989; Roebel et al., 2015). Some of these methods are capable of

representing spectro-temporal patterns that can model the tempo-

ral evolution of timbre (Roebel et al., 2015) and then, for example,

attack-sustain-release patterns can be jointly represented.

Most previous methodologies —either based on (i) or (ii)— re-

quire a dual pipeline: first, descriptors need to be extracted using a

pre-defined algorithm and parameters; and second, (temporal) mod-

els require an additional framework tied on top of the proposed de-

scriptors. Therefore, descriptors and (temporal) models are typically

not jointly designed. Throughout this chapter, we explore model-

ing timbre with a deep learning architecture having its input set

to be magnitude spectrograms. This quasi end-to-end learning ap-

proach allows minimizing the effect of the fixed pre-processing steps

described above. Note that no strong assumptions over the descrip-

tors are required since a generic perceptually-based pre-processing is

used: log-mel magnitude spectrograms. Besides, deep learning can be

interpreted as a temporal model (if more than one frame is input to

the model). In that way, the model might be capable to learn spectro-

temporal descriptors from spectrograms. In this case, the (learned)

descriptors and the temporal model are jointly optimized, which

might imply an advantage when compared to previous methods.
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From the different deep learning architectures available, we fo-

cus on CNNs due to several reasons: (i) by taking spectrograms as

input, one can interpret the first-layer filter dimensions in the time-

frequency domain; and (ii) CNNs can efficiently exploit musically rel-

evant invariances, such as the time and frequency invariances present

in spectrograms, by sharing a reduced amount of parameters.

Two main trends exist in the literature for modeling timbre using

spectrogram-based CNNs: using small-rectangular filters (m � M

and n� N)11, or using high filters (m ≤M and n� N)11.

- Small-rectangular filters (Choi et al., 2016; Han et al., 2017a)

inquire the risk of limiting the representational power of the first

layer since these filters are typically too small for modeling spread

spectro-temporal patterns (see Section 3.1). Since these filters can

only represent sub-band characteristics (with a small frequency con-

text: m � M) for a short period of time (with a small time con-

text: n � N), these can only learn, for example: onsets or bass

notes (Pons et al., 2016b; Choi et al., 2015). But these filters cannot

learn the cymbals’ or snare-drums’ time-frequency patterns in the

first layer — since such a spread context can not fit inside a small-

rectangular filter. To capture this larger context one needs to pay

the computational cost of going deeper.

- Although high filters (Dieleman and Schrauwen, 2014; Lee et al.,

2009) can fit most spectral envelopes, these require many parameters

to be learnt from (typically small) data — risking to over-fit and/or

to fit noise. See Figure 3.7 (right) for two examples of filters fitting

noise as a result of having more context available than the required.

11CNNs input is set to be log-mel spectrograms of dimensions M×N and the
CNN filter dimensions to bem×n. M and m standing for the number of frequency
bins and N and n for the number of time frames.
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For example: filter 1 is fitting noise along the frequency axis because

the onset pattern is repeated all over the vertical axis; or filter 2

is fitting noise along the time axis because the harmonic pattern is

repeated all over the horizontal axis.

Figure 3.7: Left: two spectrograms of different sounds used for the
singing voice phoneme classification experiment. Right: two trained
small-rectangular filters of size 12×8 fitting noise to model onsets and har-
monic partials, respectively. Relevant time-frequency contexts are high-

lighted in red.

Moreover, note that most CNN architectures use unique filter

shapes in every layer (Choi et al., 2016; Dieleman and Schrauwen,

2014; Han et al., 2017a). However, recent works point out that us-

ing different filter shapes in each layer is an efficient way to exploit

the CNN’s capacity (Pons and Serra, 2017; Phan et al., 2016). Note

that in Section 3.3 we proposed to use different musically motivated

filter shapes in the first layer to efficiently model several musically

relevant time-scales for learning temporal features. In the following,

we propose a novel approach to this design strategy which facilitates

learning musically relevant time-frequency contexts while minimizing

the risk of noise-fitting and over-fitting for timbre analysis. Out of

this design strategy, several CNN models are proposed and assessed

for three research tasks related to timbre: singing voice phoneme clas-

sification, musical instrument recognition and music auto-tagging.

81



3.4. LEARNING TIMBRAL REPRESENTATIONS

CNNs design strategy for timbre analysis

Timbre is considered as the “color” or the “quality” of a sound (Wes-

sel, 1979). It has been found to be related to the spectral envelope

shape and to the time variation of spectral content (Peeters et al.,

2011). Therefore, it is reasonable to assume timbre to be a time-

frequency expression and then, magnitude spectrograms are an ad-

equate input for CNNs aiming to capture timbral traces. Although

phases could be used, these are commonly discarded (Choi et al.,

2016; Dieleman and Schrauwen, 2014; Han et al., 2017a). Moreover,

timbre is often defined by what it is not: “a set of auditory attributes

of sound events in addition to pitch, loudness, duration, and spatial

position” (McAdams, 2013). In concordance with that definition, we

propose ways to design CNN filters invariant to these attributes:

- Pitch invariance . By enabling filters to convolve along with

the frequency domain of a mel spectrogram (f0 shifting), the result-

ing filter and feature map can represent timbre and pitch information

separately. However, if filters do not capture the whole spectral en-

velope encoding timbre (because these model a small frequency con-

text), previous discussion does not necessarily hold. Additionally, de-

pending on the used spectrogram representation (e.g., STFT, or mel)

CNN filters might learn more robust pitch invariant features. Note

that STFT timbre patterns are f0 dependent. However, mel timbre

patterns are more pitch invariant than STFT ones because these are

based in a different (perceptual) frequency scale. Besides, one can

achieve further pitch invariance if a max-pool layer spanning all over

the vertical axis (M’ )12 is applied to the resulting CNN feature map.

12N’ and M’ denote, in general, the horizontal and vertical dimensions of any
feature map. Therefore, although the filter map dimensions will be different
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- Loudness invariance for CNN filters can be approached by

using weight decay — L2-norm regularization of filter weights. By

doing so, filters are normalized to have low energy and energy is then

expressed into feature maps. Loudness is a perceptual term that we

assume to be correlated with energy.

- Duration invariance . Firstly, m×1 filters are time-invariant

by definition since these do not capture duration. Temporal evolu-

tion is then represented in the feature maps. Secondly, sounds with

determined length and temporal structure (like kick drums or cym-

bals) can be well captured with m×n filters. These are also duration

invariant because such sounds last a fixed amount of time. Note the

resemblance between the first layer m×1 filters with the frame-based

descriptors; and between the first layer m×n filters with the spectro-

temporal descriptors.

- Spatial position invariance is achieved by down-mixing (for

example by averaging all channels) whenever the audio is not mono.

From previous discussion, one can easily notice the importance

the CNN filter shapes of the first layer. They play a crucial role

for defining pitch invariant and duration invariant CNNs. For that

reason, we propose to use our domain expertise for deciding the filter

shapes. For example, by visually inspecting Figure 3.7 (left) one

can easily detect which are the relevant time-frequency contexts in

these spectrograms: frequency ∈ [50, 70] and time ∈ [1, 10]. These

measurements provide intuitive guidance when designing the filter

shapes for the first CNN layer — in this case, for the task of singing

voice phoneme classification.

depending on the filter size, we refer to these dimensions by the same name: N’
and M’, respectively.
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Finally, we discuss how to efficiently learn timbre features with

CNNs. Timbre is typically expressed at different scales in spectro-

grams. For example, cymbals are more spread in frequency than

bass notes, or vowels typically last longer than consonants in singing

voice. If a unique filter shape is used within a layer, one can inquire

the risk of: (a) fitting noise because too much context is modeled

and/or (b) not modeling enough context.

- Risk (a). Figure 3.7 (right) depicts two filters that have fit

noise. Observe that filter1 is repeating a noisy copy of an onset

throughout the frequency axis, and filter2 is repeating a noisy copy

of three harmonic partials throughout the temporal axis. Note that

much more efficient representations of these musical concepts can be

achieved by using different filter shapes: 1×3 and 12×1, respectively

(in red). Using the adequate filter shape allows minimizing the risk

to fit noise and also minimizes the risk to over-fit the training set

(because the CNN model size is also reduced).

- Risk (b). The frequency context of filter2 is too small to model

the whole harmonic spectral envelope, and it can only learn three

harmonic partials — what is limiting the representational power of

this (first) layer. A straightforward solution for this problem is to

increase the frequency context of the filter. However, note that if we

increase it too much, such filter is more prone to fit noise.

Using different filter shapes allows reaching a compromise between

risks (a) and (b). Consequently, using different filter shapes within

the first layer seems crucial to efficiently model different musically rel-

evant time-frequency contexts with spectrogram-based CNNs. More-

over, this design strategy ties very well with the idea of using the

available domain knowledge for designing filter shapes. Domain knowl-
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edge can intuitively guide the different filter shapes design so that

spectro-temporal envelopes can be efficiently represented within a

single layer. Interestingly, though, another possible solution exists to

capture these musically relevant contexts (or receptive fields) in deep

learning: to combine several small filters (either in the same layer or

by going deep) until the desired context is represented. However, sev-

eral reasons exist for supporting the here proposed approach: (i) the

principle by Hebb (1949) from neuroscience (cells that fire together,

wire together), and (ii) learning complete spectro-temporal patterns

within a single filter allows to inspect and interpret the learnt filters

in a compact way.

The above discussion introduces the fundamentals of the proposed

design strategy for timbre analysis with CNNs. In the following, we

run a set of experiments to assess the capacities of the proposed design

strategy. In particular, we investigate how these perform for three

research tasks related to timbre: singing voice phoneme classification,

musical instrument recognition and music auto-tagging.

Experiments

The audio is fed to the neural network using fixed-length log-mel spec-

trograms. Phases are discarded. Spectrograms are normalized: zero

mean and variance one. Activation functions are ELUs (Clevert et al.,

2016). Architectures are designed according to the proposed strat-

egy we introduced in previous discussion — by employing: weight

decay regularization, monaural signals, and different filter shapes in

the first layer. Each network is trained to optimize the cross-entropy

loss with SGD from random initialization (He et al., 2015). The best

model in the validation set is kept for testing.
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Singing voice phoneme classification

The jingu13 a cappella singing audio dataset by Black et al. (2014)

is annotated with 32 phoneme classes14 and consists of two differ-

ent role-types of singing: dan (young woman) and laosheng (old

man). The dan part has 42 recordings (89 minutes) and comes from 7

singers; the laosheng part has 23 arias (39 minutes) and comes from

other 7 laosheng singers. Since the timbral characteristics of dan

and laosheng are very different, the dataset is divided into two. Each

part is then randomly split —train (60%), validation (20%) and test

(20%)— for assessing the presented models for the phoneme classifi-

cation task. Audio was sampled at 44.1 kHz. STFT was performed

using a 25ms window (2048 samples with zero-padding) with a hop

size of 10ms. This experiment assesses the feasibility of taking ar-

chitectural decisions based on domain knowledge for an efficient use

of the network’s capacity in small data scenarios. The goal is to do

efficient deep learning by taking advantage of the design strategy we

propose. This experiment is specially relevant because, in general,

no large annotated music datasets are available — this dataset is an

example of this fact. The proposed architecture has a single wide

convolutional layer with filters of various sizes. The input is of size

80×21. The CNN makes a decision for a frame given its context:

±10ms, 21 frames in total. Considering the above discussion, we use

128 filters of sizes 50×1 and 70×1, 64 filters of sizes 50×5 and 70×5,

and 32 filters of sizes 50×10 and 70×10. A max-pool layer of 2×N ′

follows before the 32-way softmax output layer with 30% dropout.

13“Jingu” is also known as “Beijing opera” or “Peking opera”.
14Annotation and more details can be found in:

https://github.com/MTG/jingjuPhonemeAnnotation
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MP(2,N’) was chosen to achieve time-invariant representations while

keeping the frequency resolution.

We use overall classification accuracy as evaluation metric and

results are presented in Table 3.3. As a baseline, we also train a

40-component Gaussian Mixture Models (GMMs), a fully-connected

MLP with 2 hidden layers (MLP) and Choi et al. (2016) architec-

ture, that is a 5-layer CNN with small-rectangular filters of size 3×3

(Small-rectangular). All the architectures are adapted to have a sim-

ilar amount of parameters (so that results are comparable). GMMs

features are: 13 coefficients MFCCs, their deltas and delta-deltas.

80×21 log-mel spectrograms are used as input for the other compet-

ing models. Implementations are available online15.

Table 3.3: The models’ performance for dan & laosheng datasets.

dan / #param laosheng / #param
Proposed 0.484 / 222k 0.432 / 222k
Small-rectangular 0.374 / 222k 0.359 / 222k
GMMs 0.290 / - 0.322 / -
MLP 0.284 / 481k 0.282 / 430k

The proposed architecture outperforms the other models by a sig-

nificant margin (although being a single-layered model), what denotes

the potential of the proposed design strategy. Deep models based on

small-rectangular filters —which are state-of-the-art in other music-

classification tasks (Choi et al., 2016; Han et al., 2017a)— do not

perform as well as the proposed model for these small datasets. As

future work, we plan to investigate deeper models that can take ad-

vantage of the richer set of features learnt by the proposed model.

15https://github.com/ronggong/EUSIPCO2017
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Musical instrument recognition

The IRMAS dataset (Bosch et al., 2012) training split contains 6705

audio excerpts of 3 seconds length labeled with a single predomi-

nant instrument. Testing split contains 2874 audio excerpts of length

5∼20 seconds labeled with more than one predominant instrument.

11 pitched class instruments are annotated. Audios are sampled at

44.1kHz. The state-of-the-art for this dataset corresponds to a deep

CNN based on small-rectangular filters (of size 3×3) by Han et al.

(2017a). Moreover, another baseline is provided based on a stan-

dard bag-of-frames approach + SVM classifier proposed by Bosch

et al. (2012). We experiment with two architectures based on the

proposed design strategy:

• Single-layer has a single but wide CNN layer with filters of

various sizes. The input is set to be of size 96×128. We use 128

filters of sizes 5×1 and 80×1, 64 filters of sizes 5×3 and 80×3,

and 32 filters of sizes 5×5 and 80×5. We also max-pool the M’

dimension to learn pitch invariant representations: MP(M’,16 ).

50% dropout is applied to the 11-way softmax output layer.

• Multi-layer architecture’s first layer has the same settings as

single-layer but it is deepened by two convolutional layers of

128 filters of size 3×3, one fully-connected layer of size 256

and a 11-way softmax output layer. 50% dropout is applied

to all the dense layers and 25% for convolutional layers. Each

convolutional layer is followed by max-pooling, where the first

wide layer is of MP(12,16) and deeper layers are of MP(2,2).

Implementations are available online16. The STFT is computed using

16https://github.com/Veleslavia/EUSIPCO2017
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512 points FFT with a hop size of 256. Audios were down-sampled to

12kHz. Each convolutional layer is followed by batch normalization

(Ioffe and Szegedy, 2015). All convolutions use same padding. There-

fore, the dimensions of the feature maps out of the first convolutional

layer are still equivalent to the input (time and frequency). Then,

the resulting feature map of the MP(12,16) layer can be interpreted

as an eight-bands summary (96/12=8). This max-pool layer was de-

signed considering: (i) is relevant to know in which band a given filter

shape is mostly activated — as a proxy for knowing in which pitch

range timbre is occurring; and (ii) is not so relevant to know when it

is mostly activated. To obtain instrument predictions from the soft-

max layer we use the same strategy as Han et al. (2017a): estimations

for the same song are averaged and then a threshold of 0.2 is applied.

In Table 3.4, we report the standard metrics for this dataset: micro-

and macro- precision, recall and f1 score. The micro-metrics are cal-

culated globally for all testing examples while the macro-metrics are

calculated label-wise and the unweighted average is reported.

Table 3.4: Recognition performance for the IRMAS dataset.

Micro Macro
Model / #param P R F1 P R F1
Bosch et al. 0.504 0.501 0.503 0.41 0.455 0.432
Han et al. / 1446k 0.655 0.557 0.602 0.541 0.508 0.503
Single-layer / 62k 0.611 0.516 0.559 0.523 0.480 0.484
Multi-layer / 743k 0.650 0.538 0.589 0.550 0.525 0.516

Multi-layer achieved similar results as the state-of-the-art with

twice fewer #param. This result denotes how efficient are the pro-

posed architectures. Moreover, note that small filters are also used

within the proposed architecture. We found these filters to be im-
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portant for achieving state-of-the-art performance – although no in-

struments with such small time-frequency signature (such as kick

drum sounds or bass notes) are present in the dataset. However, if

such small filters are substituted with long-vertical filters, the per-

formance does not drop dramatically. Finally note that single-layer

still achieves remarkable results: it outperforms the standard bag-of-

frames + SVM approach.

Music auto-tagging

Automatic tagging is a multi-label classification task. We approach

this problem with the MagnaTagATune dataset (Law et al., 2009),

with 25.856 clips of ≈ 30 seconds sampled at 16kHz. Predicting

the top-50 tags of this dataset (instruments, genres and others) has

been a popular benchmark for comparing deep learning architectures.

Architectures from Choi et al. (2016) and Dieleman and Schrauwen

(2014) are set as baselines — that are state-of-the-art examples of

architectures based on small-rectangular filters and high filters, re-

spectively. Therefore, this dataset provides a nice opportunity to ex-

plore the tradeoff between (i) leaning little context in the first layer

with small-rectangular filters, and (ii) risking to fit noise with high

filters. Choi et al. (2016) architecture consists of a CNN of five layers

where filters are of size 3×3 with an input of size 96×187. After every

CNN layer, batch normalization and max-pool is applied. Dieleman

and Schrauwen (2014) architecture has two CNN layers with filters

of M×8 and M ′×8 size, respectively. The input is of size 128×187.

After every CNN layer a max-pool layer of 1×4 is applied. Later, the

penultimate layer is a fully connected layer of 100 units. An addi-

tional baseline is provided: Small-rectangular, which is an adaption
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of Choi et al. (2016) architecture to have the same input and number

of parameters as Dieleman and Schrauwen (2014). All models use a

50-way sigmoidal output layer and the STFT was performed using

512 points FFT with a hop size of 256.

Our experiments reproduce the same conditions as in Dieleman

and Schrauwen (2014), since the proposed model adapts their archi-

tecture to the proposed design strategy. We uniquely modify the first

layer to have many musically motivated filter shapes. Other layers

are kept intact. This allows isolating our experiments from confound-

ing factors, so that we uniquely measure the impact of increasing the

representational capacity of the first layer. Inputs are set to be of

size 128×187. Since input spectrograms (≈3 seconds) are shorter

than the total length of the song, estimations for the same song are

averaged. We consider the following frequency contexts as relevant

for this dataset: m=100 and m=75 to capture different wide spec-

tral shapes (like genres timbre, guitar or cello), and m=25 to capture

shallow spectral shapes (like drums). For consistency with Dieleman

and Schrauwen (2014), we consider the following temporal context:

n=[1,3,5,7 ]. We use several filters per shape in the first layer:

- m=100 : 10x 100×1, 6x 100×3, 3x 100×5 and 3x 100×7.

- m=75 : 15x 75×1, 10x 75×3, 5x 75×5 and 5x 75×7.

- m=25 : 15x 25×1, 10x 25×3, 5x 25×5 and 5x 25×7.

For merging the resulting feature maps, these need to be of the

same dimension. We zero-pad the temporal dimension before the

first layer convolutions and we use max-pool layers of size MP(M’,4).

Note that all the resulting feature maps have the same dimension:

1×N ′, and are pitch invariant. 50% dropout is applied to all dense

layers. We also evaluate variants of the proposed model where the
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number of filters per shape in the first layer are increased according

to a factor. The rest of the layers are kept intact. Implementations

are available online17.

Table 3.5: The models’ performance for the MTT dataset.

Model AUC/#param Model AUC/#param

Small-rectangular 86.52 / 75k Choi et al. 89.40 / 22M18

Dieleman et al. 88.15 / 75k Proposed x2 89.33 / 191k
Proposed 88.95 / 75k Proposed x4 88.71 / 565k

We use area under the ROC curve (AUC) as a metric for our ex-

periments. Table 3.5 (left column) shows the results of three different

architectures with the same number of parameters. The proposed

model outperforms the others, denoting that architectures based on

the design strategy we propose can better use the capacity of the

CNN. Moreover, Table 3.5 (right column) shows that it is beneficial

to increase the representational capacity of the first layer — up to the

point where we achieve equivalent results to the state-of-the-art while

significantly reducing the number of learnable parameters (#param)

of the model.

Conclusions

Inspired by the fact that it is hard to identify the adequate com-

bination of parameters for a deep learning model —what leads to

architectures being difficult to interpret—, we decided to incorporate

domain knowledge during the architectural design process. This lead

us to discuss some common practices when designing CNNs for music

17https://github.com/jordipons/EUSIPCO2017
18Although equivalent results can be achieved with 750k parameters.
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classification, with a specific focus on how to efficiently learn timbre

representations. This discussion motivated the design strategy we

present for modeling timbre using spectroram-based CNNs. Several

ideas were proposed to achieve pitch, loudness, duration and spatial

position invariance with CNNs. Moreover, we proposed actions to

increase the efficiency of these models. The idea is to use different

filter shapes in the first layer that are motivated by audio domain

knowledge. Namely, we propose to use different musically motivated

filter shapes in the first layer. Besides providing theoretical discussion

and background for the proposed design strategy, we also validated

it empirically. Several experiments in three datasets for different

tasks related to timbre (singing voice phoneme classification, musi-

cal instrument recognition and music auto-tagging) provide empirical

evidence that this approach is powerful and promising. In these ex-

periments, we evaluate several architectures based on the presented

design strategy to show that the proposed design strategy is effective

in all cases. These results support the idea that increasing the repre-

sentational capacity of the layers can be achieved by using different

filter shapes. Specifically, the proposed architectures used several fil-

ter shapes having the capacity of capturing timbre with high enough

filters. For example, we found very remarkable the results of the

single-layered models we proposed. Since single-layer architectures

use a reduced amount of parameters, these might be very useful in

scenarios where small data and a few hardware resources are avail-

able. Furthermore, when deepening the network we were able to

achieve equivalent results to the state-of-the-art — if not better.
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3.5 Summary and conclusions

Our aim is to efficiently model music audio with deep neural networks,

which is a very challenging undertaking. Some of these challenges are

that music exhibits long-term dependencies (that define the tempo or

the rhythm of a song), or that it is difficult to define what’s timbre

in music. Can we design deep learning architectures to efficiently

capture these musically relevant characteristics?

As seen in this chapter, it exists no consensus on which are the

best deep learning architectures to fit music audio — because it is

hard to discover the adequate combination of hyper-parameters for

a particular task, which can lead to architectures being difficult to

interpret. As as en example of this, note that many computer vision

architectures are used for processing spectrograms like images (Choi

et al., 2016). However, images have a spatial meaning — while the

spectrograms’ axis stand for time and frequency. With this in mind,

our goal is to rationalize this design process by exploring deep learn-

ing architectures specifically thought to fit music audio — so that

these can be more successful and understandable.

To this end, we have presented a novel CNNs design strategy that

consists of modeling different (time-frequency) contexts within the

first CNN layer with different (musically motivated) filter shapes that

are intuitively designed to represent musical characteristics. Through-

out that chapter have shown that by following this design strategy,

it is possible to efficiently learn temporal and timbral representa-

tions. For example, we employ different “long” filter shapes in the

first CNN layer to efficiently capture the tempo and rhythm features

present in music spectrograms. In addition, we have also studied
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how to capture timbral traces with spectroram-based CNNs. Several

ideas were proposed to achieve pitch, loudness, duration and spatial

position invariance with CNNs. Our experimental results show that

by following this design strategy, we can design very compact CNNs

that are interpretable and perform competently. We show that mu-

sically motivated CNNs can achieve results that are comparable (if

not better) to the state-of-the-art for several tasks.

To conclude, we want to remark that the here proposed design

strategy heavily relies on domain knowledge. It is important to note

that this strategy might be constraining the solution space of the

proposed deep learning models. From one side, this can be advan-

tageous. By restricting the solution space (with architectures specif-

ically tailored towards modeling musical features), we expect these

deep learning models to have more generalization capabilities and to

be more interpretable. On the other side, one inquires the risk of not

allowing the model to be expressive enough19 — what might be of

utility in scenarios where not much training data are available, but it

can be limiting when enough data and compute power are accessible.

Figure 3.8: Graphic representation of the trade-off between pure
data-driven approaches and pure knowledge-based approaches.

19In other words, that the model could be over-regularized, or over-constrained.
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In the following lines, we discuss a trade-off that motivated some

of our work when investigating which deep learning architectures are

most suitable for music audio signals. This discussion departs from

the idea that it is unreasonable to assume that sizable amounts of

training data are generally accessible to train deep neural networks.

Hence, regularizing the solution space of these models can be an inter-

esting direction to peruse when not much training data is available.

From this perspective, the trade-off we discuss can be seen as a way

to utilize domain knowledge for regularizing the solution space.

Above, we identified a trade-off between pure data-driven ap-

proaches and pure knowledge-based approaches. On the left-hand

side of Figure 3.8, we represent the non-constrained models that

explore the solution space by any means: brute-force optimization

of hyper-parameters and architectures, a pure data-driven approach

that is learning from data. Part of the deep learning game is to al-

low the architecture to freely discover features, which leads to very

successful models. However, a common criticism to deep learning re-

lates with the difficulty in understanding the underlying relationships

that the neural networks are learning, thus behaving like a black-box.

Having more interpretable models can be valuable since it has already

been pointed that machine learning algorithms are learning how to

“reproduce the ground truth” rather than learning musically relevant

characteristics (Sturm, 2014). If these models explore the solution

space without any constraint, it exists the risk of delivering a solu-

tion difficult to interpret that, besides, can be prone to over-fitting —

given that a small sample of data is generally available for training.

On the right-hand side of Figure 3.8, handcrafted features and

knowledge-based approaches are represented. This family of mod-
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els rely on domain knowledge to restrict the solution space so that

these have more chances to generalize although few training data are

available. One can think of that as a domain-knowledge informed

inductive bias. However, restricting too much the solution space of

deep neural networks can be problematic because the learning al-

gorithm won’t be able to sufficiently explore the solution landscape.

Hence, if deep neural networks are not expressive enough (e.g., due to

the architecture, initialization schema, or input representation), such

models are likely to perform poorly. In other words, by restricting

the solution space we are inquiring the risk of not fully exploiting the

power of deep learning.

Therefore, provided that training data are generally scarce, it

might be interesting to explore a compromise between a) expressive-

ness, and b) domain-knowledge informed constraints in deep neural

networks. In this chapter, our goal was to constrain the solution space

in a way that allows model interpretability while still guaranteeing

the expressiveness of deep neural networks. If the solution space

is severely limited by the intervention of the designer (as it can be

currently happening with hand-crafted features and knowledge-based

classifiers), we might be missing the opportunity that deep learning

is offering to train highly expressive models. That said, the deep

learning framework allows a compromise between the two previously

described model paradigms. Deep learning can incorporate domain

knowledge in several parts of its pipeline: in its input, architecture,

cost, or weights initialization — what can tailor the model towards

learning solutions closer to what is expected. For example, by de-

signing musically inspired deep learning architectures, one aims to

place the model close to a plausible solution having the generaliza-
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tion power of the known priors that are encoded in the architecture.

Throughout this chapter, we have investigated to constrain the

solution space by employing musically motivated deep learning ar-

chitectures together with some minimal pre-processing (with log-mel

spectrogram inputs). Although these musically motivated architec-

tures rely on strong assumptions about the nature of music, these still

allow for expressive deep learning models. Without restricting too

much the solution space, we aim to achieve more understandable ex-

pressive models that are more prone to generalize in the current con-

text where large corpus of annotated audio are generally not available.

3.6 Publications, code and contributions

Out of this research, a series of conference articles were published:

• Jordi Pons, Thomas Lidy, and Xavier Serra. “Experiment-

ing with musically motivated convolutional neural networks”,

in 14th International Workshop on Content-Based Multimedia

Indexing (CBMI2016).

– This work was acknowledged with the best paper award.

– Work done in collaboration with Thomas Lidy, who helped

to conduct some preliminary experiments.

– Code: https://github.com/jordipons/CBMI2016

• Jordi Pons, and Xavier Serra. “Designing efficient architec-

tures for modeling temporal features with convolutional neural

networks”, in 42nd IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP2017).

– Code: https://github.com/jordipons/ICASSP2017
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• Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and

Xavier Serra. “Timbre Analysis of Music Audio Signals with

Convolutional Neural Networks”, in 25th European Signal Pro-

cessing Conference (EUSIPCO2017).

– Code: https://github.com/jordipons/EUSIPCO2017

– Code: https://github.com/Veleslavia/EUSIPCO2017

– Code: https://github.com/ronggong/EUSIPCO2017

– Work done in collaboration with Olga (who run the in-

strument classification experiments) and Rong (who run

the singing-voice phoneme classification experiments).

Back when we started our research in 2015, it was not clear how

deep learning would impact the music technology field. To experi-

ment with deep learning and music audio, we decided to explore the

musically motivated CNNs path as a way to adapt deep learning for

the music audio case. To better understand which is the context

and the scope of our contribution, see the feedback we got from an

anonymous reviewer: “Its contribution is that it goes beyond the gen-

eral washing machine approach to deep learning (data in results out)

to attempt to leverage/achieve insight on musical structure.”

In addition to the aforementioned research, together with Rong

Gong20, we also performed some additional experiments with mu-

sically motivated front-ends. In the context of his research project

on automatically evaluating a cappella recordings for jingju (Beijing

Opera) singing education, we published two articles:

20A former PhD student who was my colleague at the Music Technology Group.
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• Jordi Pons, Rong Gong, and Xavier Serra. “Score-informed

syllable segmentation for a capella singing voice with convolu-

tional neural networks”, in 18th International Society for Music

Information Retrieval Conference (ISMIR2017).

• Rong Gong, Jordi Pons, and Xavier Serra. “Audio to score

matching by combining phonetic and duration information”, in

18th International Society for Music Information Retrieval Con-

ference (ISMIR2017).

In short, in Pons et al. (2017a) and in Gong et al. (2017) we

explored the usage of musically motivated CNNs as feature extractors

that work together with probabilitstic models (e.g., with a Hidden

Markov Model). In Pons et al. (2017a), we use the CNNs to estimate

syllable onset detection functions, and in Gong et al. (2017) we use

the CNNs to construct an acoustic model. In these works we show

that musically motivated CNNs can be effective data-driven feature

extractors — even if the training data is scarce.

After us, a series of very interesting follow-up publications (led

by other researchers) kept investigating the characteristics and the

applicability of musically motivated CNNs. For example, see the work

by Chen and Wang (2017), Schreiber and Müller (2018), or Schreiber

and Müller (2019). Furthermore, to see how the design strategy we

proposed can be extended to other audio domains that are not music,

see the work by Fonseca et al. (2018) — who employed similar ideas

for acoustic scene classification.
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Chapter 4

Non-trained CNNs for

music and audio tagging

The computer vision literature shows that randomly weighted neu-

ral networks perform reasonably as feature extractors (Saxe et al.,

2011; Rosenfeld and Tsotsos, 2018). Following this idea, we study

how non-trained (randomly weighted) convolutional neural networks

perform as feature extractors for (music) audio classification tasks.

We use features extracted from the embeddings of deep architectures

as input to a classifier — with the goal to compare classification ac-

curacies when using different randomly weighted architectures. By

following this methodology, we run a comprehensive evaluation of

the current deep neural networks for audio classification, and pro-

vide evidence that the architectures alone are an important piece for

resolving (music) audio problems using deep neural networks.

Along with this section we introduce a rather non-conventional

technique to run a meta-evaluation of the main deep learning archi-

tectures for audio. By evaluating non-trained (randomly weighted)
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CNNs, we run a meta-study at a low computational cost. To this

end, we first perform a comprehensive state-of-the-art review and

categorize the most used deep learning architectures for audio. In or-

der to facilitate the discussion around these architectures, we divide

the deep learning pipeline into two parts: front-end and back-end,

see Figure 4.1. The front-end is the part that interacts with the in-

put signal in order to map it into a latent-space, and the back-end

predicts the output given the representation obtained by the front-

end. Due to the nature of the proposed methodology (see below),

the literature review we present focuses in introducing the main deep

learning front-ends for audio classification: from the above introduced

musically motivated CNNs (see Chapter 3), to the widely used com-

puter vision architectures applied to spectrograms (Choi et al., 2016).

A detailed review of the most used back-ends for audio classification

is available in Chapter 5.

4.1 Motivation

Some intriguing properties of deep neural networks are periodically

showing up in the scientific literature. Examples of those are: (i) per-

ceptually non-relevant signal perturbations that dramatically affect

the predictions of an image classifier (Goodfellow et al., 2014b; Szegedy

et al., 2013); (ii) although there is no guarantee of converging to a

global minima that might generalize, image classification models per-

form well with unseen data (Krizhevsky et al., 2012; He et al., 2015);

or (iii) non-trained deep neural networks are able to perform reason-

ably well as image feature extractors (Saxe et al., 2011; Rosenfeld and

Tsotsos, 2018). In this work, we exploit one of the above listed prop-
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erties (iii) to evaluate how discriminative deep audio architectures

are before training. Previous works already explored the idea of em-

pirically studying the qualities of non-trained (randomly weighted)

networks, but mainly in the computer vision field:

• Saxe et al. (2011) studied how discriminative are the architec-

tures themselves by evaluating the classification performance of

SVMs fed with features extracted from non-trained (random)

CNNs. They showed that a surprising fraction of the perfor-

mance in deep image classifiers can be attributed to the archi-

tecture alone. Therefore, the key to good performance lies not

only on improving the learning algorithms but also in searching

for the most suitable architectures. Further, they showed that

the (classification) performance delivered by random CNN fea-

tures is correlated with the results of their end-to-end trained

counterparts — this result means, in practice, that one can by-

pass the time-consuming process of learning for evaluating a

given architecture. We build on top of this result to evaluate

current CNN architectures for audio classification.

• Rosenfeld and Tsotsos (2018) fixed most of the model’s weights

to be random, and only allowed a small portion of them to be

learned. By following this methodology, they showed a small

decrease in image classification performance when these models

were compared to their fully trained counterparts. Further, the

performance of their non fully-trained models can be summa-

rized as follows:

DenseNet � ResNet > VGG � AlexNet 1

1To know more about these computer vision architectures, see the original ref-
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This result matches previous works reporting how these (fully

trained) models perform (Huang et al., 2017; He et al., 2016; Si-

monyan and Zisserman, 2014), confirming the performance cor-

relation between randomly weighted models and their trained

counterparts found by Saxe et al. (2011)

• Adebayo et al. (2018) empirically assessed the local explana-

tions of deep image classifiers to find that randomly weighted

models produce explanations similar to those produced by mod-

els with learned weights. They conclude that the architectures

introduce a strong prior which affects the learned (and not

learned) representations.

• Ulyanov et al. (2018) also showed that the structure of a neural

network (the non-trained architecture) is sufficient to capture

useful features for the tasks of image denoising, super-resolution

and inpainting. They think of any designed architecture as a

hand-crafted model where prior information is embedded in the

structure of the network itself. This way of thinking resonates

with the rationale behind the family of audio models designed

considering domain knowledge (see Section 4.2) — what de-

notes that in both audio and image fields it exists the interest

of bringing together the end-to-end learning literature and pre-

vious research.

Few related works exist in the audio field, and every randomly weighted

neural network we found in the audio literature was a mere base-

line (Choi et al., 2017b; Kim et al., 2018; Arandjelovic and Zisserman,

erences (in order of appearance): Huang et al. (2017), He et al. (2016), Simonyan
and Zisserman (2014), and Krizhevsky et al. (2012)
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2017). Inspired by previous computer vision works, we study which

audio architectures work the best via evaluating how non-trained

CNNs perform as feature extractors. To this end, we use the CNNs’

embeddings to construct feature vectors for a classifier — with the

goal to compare classification performances when different randomly

weighted architectures are used to extract features.

Extreme learning machines (ELMs) (Schmidt et al., 1992; Pao

et al., 1994; Huang et al., 2006), and echo state networks (ESNs)

(Jaeger, 2001) are also closely related to our work. In short, ELMs are

classification/regression models2 that are based on a single-layer MLP

with random weights. ELMs work as follows: first, they randomly

project the input into a latent space; and then, learn how to predict

the output via a least-square fit. More formally, one aims to predict:

Ŷ = W2 σ(W1X), (4.1)

where W1 is the (randomly weighted) matrix of input-to-hidden-layer

weights, σ is the non-linearity, W2 is the matrix of hidden-to-output-

layer weights, and X represents the input. The training algorithm

is as follows: 1) set W1 with random values; 2) estimate W2 via a

least-squares fit:

W2 = σ(W1X)+Y, (4.2)

where + denotes the Moore-Penrose inverse. Since no iterative pro-

cess is required for learning the weights, training is faster than stochas-

tic gradient descent (Huang et al., 2006). Provided that we process

audio signals with randomly weighted CNNs, ELM-based classifiers

are a natural choice for our study — so that all the pipeline (except

2Support Vector Machines are also classification/regression models.
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the last layer) is based on random projections that are only con-

strained by the structure of the neural network. Although ELMs are

not widely used by the audio community, they have been used for

speech emotion recognition (Han et al., 2014; Kaya and Salah, 2016),

or for music audio classification (Scardapane et al., 2013; Loh and

Emmanuel, 2006; Khoo et al., 2012). ESNs differ from ELMs in that

their random projections use recurrent connections. Given that the

audio models we aim to study are not recurrent, we leave for future

work using ESNs — see Scardapane and Uncini (2017) or Holzmann

(2009) for audio applications of ESNs.

4.2 Literature review: CNN front-ends

for audio

Along this chapter we evaluate the most used deep learning archi-

tectures for (music) audio classification. In order to facilitate the

discussion around these architectures, we divide the deep learning

pipeline into two parts: front-end and back-end.

Figure 4.1: The deep learning pipeline.

The front-end is the part that interacts with the input signal in

order to map it into a latent-space, and the back-end predicts the

output given the representation obtained by the front-end. Note

that one can interpret the front-end as a “feature extractor” and the

back-end as a “classifier”. Given that we compare how several non-

trained (random) CNNs perform as feature extractors, and we will
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Figure 4.2: CNN front-ends for audio classification tasks — with exam-
ples of possible configurations for every paradigm.

use out-of-the-box classifiers to predict the classes: this literature

review focuses in introducing the main deep learning front-ends for

audio classification.

Front-ends — These are generally conformed by CNNs (Diele-

man and Schrauwen, 2014; Choi et al., 2016; Zhu et al., 2016), since

these can encode efficient representations by sharing weights3 along

the signal. Figure 4.2 depicts six different CNN front-end paradigms,

which can be divided into two groups depending on the used in-

put signal: waveforms (Dieleman and Schrauwen, 2014; Zhu et al.,

2016; Lee et al., 2018) or spectrograms (Choi et al., 2016; Pons

and Serra, 2017; Pons et al., 2017b). Further, the design of the

filters can be either based on domain knowledge or not. For ex-

ample, one leverages domain knowledge when the frame-level single-

3Which constitute the (eventually learnt) feature representations.
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shape4 front-end for waveforms is designed so that the length of the

filter is set to be the same as the window length in a STFT (Dieleman

and Schrauwen, 2014). Or for spectrogram front-ends, one laverages

domain knowledge when using vertical filters to learn spectral repre-

sentations (Lee et al., 2009) or horizontal filters to learn longer tem-

poral cues (Schlüter and Böck, 2014). Generally, a single filter shape

is used in the first CNN layer (Dieleman and Schrauwen, 2014; Choi

et al., 2016; Lee et al., 2009; Schlüter and Böck, 2014), but some re-

cent work reported performance gains when using several filter shapes

in the first layer (Zhu et al., 2016; Pons and Serra, 2017; Pons et al.,

2017b; Phan et al., 2016; Pons et al., 2016b; Chen and Wang, 2017).

Using many filters promotes a more rich feature extraction in the first

layer, and facilitates leveraging domain knowledge for designing the

filters’ shape. For example: a frame-level many-shapes front-end for

waveforms can be motivated from a multi-resolution time-frequency

transform5 perspective — with window sizes varying inversely with

frequency (Zhu et al., 2016). Or since it is known that some patterns

in spectrograms are occurring at different time-frequency scales, one

can intuitively incorporate many vertical and/or horizontal filters to

efficiently capture those in a spectrogram front-end (Pons and Serra,

2017; Pons et al., 2017b). As seen, using domain knowledge when

designing the models allows to naturally connect the deep learning

literature with previous relevant signal processing work. On the other

hand, when domain knowledge is not used, it is common to employ

a deep stack of small filters, e.g.: 3×1 in the sample-level front-end

used for waveforms (Lee et al., 2018; van den Oord et al., 2016),

or 3×3 in the small-rectangular filters front-end used for spectro-

4Italicized names correspond to the front-end types in Figure 4.2.
5The Constant-Q Transform (Brown, 1991) is an example of such transform.
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grams (Choi et al., 2016). These models based on a deep stack of

small filters make minimal assumptions over the local stationarities

of the signal, so that any structure can be learnt via hierarchically

combining small-context representations.

4.3 Methodology

Our goal is to study which CNN front-ends work best via evaluating

how non-trained models perform as feature extractors. Our method-

ology is based on the traditional pipeline of features extraction +

classifier. We use the embeddings of non-trained (random) CNNs as

features: for every audio clip, we compute the average of each fea-

ture map (in every layer) and concatenate these values to construct

a feature vector (Choi et al., 2017b). The baseline feature vector is

constructed from 20 MFCCs, their ∆s and ∆∆s. We compute their

mean and standard deviation through time, and the resulting feature

vector is of size 120. We set the standard MFCCs + SVM setup as

baseline. To allow a fair comparison with the baseline, CNN models

have ≈ 120 feature maps — so that the resulting feature vectors have

a similar size as the MFCCs vector. Further, we evaluate an alter-

native configuration with more feature maps (≈ 3500) to show the

potential of this approach. The model’s description omit the number

of filters per layer for simplicity — full implementation details are

accessible online, see Section 5.7 for the links.

Features: randomly weighted CNNs

Except for the VGG model that uses ELUs as non-linearities (Choi

et al., 2016; Clevert et al., 2016), the rest use ReLUs (He et al., 2015).

We do not use batch normalization, see discussion in section 4.4.
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We use waveforms and spectrograms as input to our CNNs:

Waveform inputs — are of ≈ 29sec (350,000 samples at 12kHz),

and the following architectures are under study:

- Sample-level: is based on a stack of 7 blocks that are composed by

a 1D-CNN layer (filter length: 3, stride: 1) and a max-pool layer (size:

3, stride: 3), with the exception of the input block which has no max-

pooling and its 1D-CNN layer has a stride of 3 (Lee et al., 2018). Av-

erages to construct the feature vector are computed after every pool-

ing layer, except for the first layer that are computed after the CNN.

- Frame-level many-shapes: consists of a 1D-CNN layer with five

filter lengths: 512, 256, 128, 64, 32 (Zhu et al., 2016). Every filter’s

stride is of 32 and we use same padding — to easily concatenate fea-

ture maps of the same size. Note that out of this single 1D-CNN layer,

five feature maps (resulting of the different filter length convolutions)

are concatenated. For that reason, every feature map needs to have

the same (temporal) size. Since this model is single-layered and it

might be in clear disadvantage when compared to the sample-level

CNN, we increase its depth via adding three more 1D-CNN layers

(length: 7, stride: 1) — where the last two layers have residual con-

nections, and the penultimate layer’s feature map is down-sampled

by two (MP x2), see Figure 4.3. Averages to construct the feature

vector are calculated for each feature map after every 1D-CNN layer.

- Frame-level: consists of a 1D-CNN layer with a filter of length

512 (Dieleman and Schrauwen, 2014). Stride is set to be 32 to allow

a fair comparison with frame-level many-shapes. As in frame-level

many-shapes, we increase the depth of the model via adding three

more 1D-CNN layers (as in Figure 4.3). Averages to construct the fea-

ture vector are calculated for each feature map after every 1D-CNN layer.
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Figure 4.3: Additional layers for the frame-level & frame-level many-
shapes architectures, similar as in Dieleman and Schrauwen (2014) and in

Pons et al. (2018) — where MP stands for max pooling.

Spectrogram inputs — are set to be log-mel spectrograms

(spectrograms size: 1376×966, being ≈ 29sec of signal).

Differently from waveform models, spectrogram architectures use no

additional layers to deepen single-layered CNNs because these already

deliver a reasonable classification performance. Unless we state the

contrary, every CNN layer used for processing spectrograms is set to

have a stride of 1. As for the frame-level many-shapes model, we use

same padding when many filter shapes are used in the same layer.

The following spectrogram models are studied:

- 7×96: consists of a single 1D-CNN layer with filters of length 7

that convolve through the time axis (Dieleman and Schrauwen, 2014).

As a result: CNN filters are vertical and of shape 7×96. Therefore,

these filters can encode spectral (timbral) representations. Averages

to construct the feature vector are calculated for each feature map

after the 1D-CNN layer.

- 7×86: consists of a single 2D-CNN layer with vertical filters

of shape 7×86 (Pons et al., 2017b, 2016b). Since its vertical shape

is smaller than the input (86<96), filters can also convolve through

the frequency axis — what can be seen as “pitch shifting” the fil-

ter. Consequently, 7×86 filters can encode pitch-invariant timbral

6STFT parameters: window size = 512, hop size=256, and fs=12kHz.
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representations (Pons et al., 2017b, 2016b). Further, since the re-

sulting activations can carry pitch-related information, we max-pool

the frequency axis to get pitch-invariant features (max-pool shape:

1×11). Averages to construct the feature vector are calculated for

each feature map after the max-pool layer.

- Timbral: consists of a single 2D-CNN layer with many verti-

cal filters of shapes: 7×86, 3×86, 1×86, 7×38, 3×38, 1×38, see

Figure 4.4 (top) (Pons et al., 2017b). These filters can also con-

volve through the frequency axis and therefore, these can encode

pitch-invariant representations. Several filter shapes are used to effi-

ciently capture different timbrically relevant time-frequency patterns,

e.g.: kick-drums (can be captured with 7×38 filters representing sub-

band information for a short period of time), or string ensemble in-

struments (can be captured with 1×86 filters representing spectral

patterns spread in the frequency axis). Further, since the resulting

activations can carry pitch-related information, we max-pool the fre-

quency axis to get pitch-invariant features (max-pool shapes: 1×11

or 1×59). Averages to construct the feature vector are calculated for

each feature map after the max-pool layer.

- Temporal: several 1D-CNN filters (of lengths: 165, 128, 64,

32) operate over an energy envelope obtained via mean-pooling the

frequency-axis of the spectrogram, see Figure 4.4 (bottom). By com-

puting the energy envelope in that way, we are considering high and

low frequencies together while minimizing the computations of the

model. Observe that this single-layered 1D-CNN is not operating

over a 2D spectrogram, but over a 1D energy envelope — therefore

no vertical convolutions are performed, only 1D (temporal) convo-

lutions are computed. As seen, domain knowledge can also provide
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guidance to (effectively) minimize the computations of the model.

Averages to construct the feature vector are calculated for each fea-

ture map after the CNN layer.

- Timbral+temporal: combines both timbral and temporal CNNs

in a single (but wide) layer, see Figure 4.4 (Pons et al., 2018).

Averages to construct the feature vector are calculated in the same

way as for timbral and temporal architectures.

- VGG: is a computer vision model based on a stack of 5 blocks

combining 2D-CNN layers (with small rectangular filters of 3×3)

and max-pooling (of shapes: 4×2, 4×3, 5×2, 4×2, 4×4, respec-

tively) (Choi et al., 2016). Averages to construct the feature vector

are computed after every pooling layer.

Figure 4.4: Timbral+temporal architecture. MP: max-pool.

As seen, studied architectures are representative of the audio classifi-

cation state-of-the-art (introduced in Section 4.2). For further details

about the models under study: the code is online7, and a graphical

conceptualization of the models is in Figures 4.2, 4.3 and 4.4.

7In Section 5.7 (Contributions) we attach the link to the source code.

113



4.3. METHODOLOGY

Classifiers: SVM and ELM

We study how several feature vectors (computed considering different

CNNs) perform for a given set of classifiers: SVMs and ELMs. We

discarded the use of other classifiers since their performance was not

competitive when compared to those. SVMs and ELMs are hyper-

parameter sensitive, for that reason we perform a grid search:

- SVM hyper-parameters: we consider both linear and rbf ker-

nels. For the rbf kernel, we set γ to: 2−3, 2−5, 2−7, 2−9, 2−11, 2−13,

#features−1; and for every kernel configuration, we try several C ’s

(penalty parameter): 0.1, 2, 8, 32.

- ELM ’s main hyper-parameter is the number of hidden units:

100, 250, 500, 1200, 1800, 2500. We use ReLUs as non-linearity.

Datasets: music and acoustic events

- GTZAN fault-filtered version (Tzanetakis and Cook, 2002; Kere-

liuk et al., 2015). Training songs: 443, validation songs: 197, and

test songs: 290 — divided in 10 classes. We use this dataset to study

how randomly weighted CNNs perform for music genre classification.

- Extended Ballroom (Marchand and Peeters, 2016; Cano et al.,

2006). 4,180 songs are divided in 13 classes. 10 stratified folds are

randomly generated for cross-validation. We use this dataset to study

how randomly weighted CNNs classify rhythm/tempo classes.

- Urban Sound 8K (Salamon et al., 2014a). 8732 acoustic events

are divided in 10 classes. 10 folds are already defined by the dataset

authors for cross-validation. Since urban sounds are shorter than 4

seconds and our models accept ≈ 29sec inputs, the signal is repeated

to create inputs of the same length. We use this dataset to study how

randomly weighted CNNs perform to classify (non-music) sounds.
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4.4 Reproducing former results to dis-

cuss our method

Choi et al. (2017b) used random CNN features as baseline for their

work, and found that (in most cases) these random CNN features

perform better than MFCCs. Motivated by this result, we pur-

sue this idea for studying how different deep architectures perform

when resolving audio problems. To start, we first reproduce one

of their experiments using random CNNs — under the same con-

ditions8: the GTZAN dataset is split in 10 stratified folds used for

cross-validation9, a VGG architecture with batch normalization is

employed, and the classifier is an SVM. We found that results can

vary depending on the batch size if, when computing the feature vec-

tors, layers are normalized with the statistics of current batch (batch

normalization). For example: if audio-features of the same genre are

batch-normalized by the same factor, one can create an artificial genre

cue that might affect the results. One can observe this phenomena

in Figure 4.5, where the best results are achieved when all songs of

the same genre fill a full batch (batch size of 100).10 We also observe

that small batch sizes are harming the model’s performance — see

in Figure 5 when batch sizes are set to 1 and 10. And finally, when

batch normalization is not used, no matter what batch size we use

that the results remain the same — ANOVA test with H0 being that

averages are equal (p-value=0.491 ). Since it is not desirable that

8https://github.com/keunwoochoi/transfer learning music (more information
is available in issue #2)

9Our work does not use this split, we use the fault-filtered version.
10The GTZAN has 10 genres with 100 audios each, one can fill batches of 100

with audios of the same genre via sorting the data by genres.
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Figure 4.5: Random CNN features behavior when using (or not) batch
normalization. Dataset : GTZAN, 10-fold cross-validation. Performance
metric (%): average accuracies (and standard deviations) across 3 runs.

Classifier : SVM.

performance depends on the batch size, and that the feature vector

of an audio depends on other audios (that are present in the batch):

we decided not to use batch normalization.

4.5 Experimental results

The results below show average accuracies across 3 runs for every

feature type (listed on the right side of each figure with the length

of the feature vector in parenthesis). We use a t-test to reveal which

models are performing the best — H0 being that averages are equal.

4.5.1 GTZAN: music genre recognition

The sample-level waveform model always performs better than frame-

level many-shapes (t-test: p-value�0.05). The two best perform-

ing spectrogram-based models are: timbral+temporal and VGG —
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Figure 4.6: Accuracy (%) results for the GTZAN dataset with random
CNN feature vectors of length ≈ 120.

Figure 4.7: Accuracy (%) results for the GTZAN dataset with random
CNN feature vectors of length ≈ 3500.
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with a remarkable performance of the timbral model alone. The

timbral+temporal CNN performs better than VGG when using the

ELM (≈3500) classifier (t-test: p-value=0.017); but in other cases,

both models perform equivalently (t-test: p-value>0.05). Moreover,

the 7x86 model performs better than 7x96 when using SVMs (t-test:

p-value<0.05), but when using ELMs: 7x96 and 7x86 perform equiv-

alently (t-test: p-value�0.05). The best VGG and timbral+temporal

models achieve the following (average) accuracies: 59.65% and 56.89%,

respectively — both with an SVM (≈3500) classifier. Both models

outperform the MFCCs baseline: 53.44% (t-test: p-value<0.05), but

these random CNNs perform worse than a CNN pre-trained with the

Million Song Dataset: 82.1% (Lee et al., 2018). Finally, note that al-

though timbral and timbral+temporal models are single-layered, these

are able to achieve remarkable performances — showing that single-

layered spectrogram front-ends, attending to musically relevant con-

texts, can do a reasonable job without paying the computational cost

of going deep (Pons et al., 2017b, 2016b). Thus meaning, e.g., that

the saved capacity can now be employed by the back-end to learn

additional representations.

4.5.2 Ballroom: rhythm/tempo classification

The sample-level waveform model always performs better than frame-

level many-shapes (t-test: p-value�0.05). The two best performing

spectrogram-based models are: temporal and timbral+temporal, but

the temporal model performs better than timbral+temporal in all

cases (t-test: p-value�0.05) — denoting that spectral cues can be

a confounding factor for this dataset. Moreover, the 7x86 model

performs better than 7x96 in all cases (t-test: p-value<0.05). The
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Figure 4.8: Accuracy (%) results for the Extended Ballroom dataset
with random CNN feature vectors of length ≈ 120.

Figure 4.9: Accuracy results for the Extended Ballroom dataset with
random CNN feature vectors of length ≈ 3500.
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best (average) accuracy score is obtained using temporal models and

SVMs (≈3500): 89.82%. Note that the temporal model clearly out-

performs the MFCCs baseline: 63.25% (t-test: p-value�0.05) and,

interestingly, it performs slightly worse than a trained CNN: 93.7%

(Jeong et al., 2017). This result confirms that the architectures

(alone) introduce a strong prior which can significantly affect the per-

formance of an audio model. Thus meaning that, besides learning,

designing effective architectures might be key for resolving (music)

audio tasks with deep learning. In line with that, note that the tem-

poral architecture is designed considering musical domain knowledge.

In this case: how tempo and rhythm are expressed in spectrograms.

Hence, its good performance also validates the design strategy of us-

ing musically motivated architectures as a way to intuitively navigate

through the network parameters space (Pons et al., 2016b, 2017b).

4.5.3 Urban Sound 8K: acoustic event detection

For these experiments we do not use the temporal model (with 1D-

CNNs of length 165, 128, 64, 32). Instead, we study the timbral+time

model — where time follows the same design as temporal but with

filters of length: 64, 32, 16, 8. This change is motivated by the fact

that temporal cues in (natural) sounds are shorter and less important

than temporal cues in music (i.e., rhythm or tempo).

The sample-level waveform model always performs better than frame-

level many-shapes (t-test: p-value�0.05). The two best performing

spectrogram-based models are: VGG and timbral+time — but VGG

performs better than timbral+time in all cases (t-test: p-value�0.05).

Also, the 7x86 model performs better than 7x96 in all cases (t-test:

p-value<0.075). The best (average) accuracy score is obtained us-
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Figure 4.10: Accuracy (%) results for the Urban Sound 8k dataset with
random CNN feature vectors of length ≈ 120.

Figure 4.11: Accuracy (%) results for the Urban Sound 8k dataset with
random CNN feature vectors of length ≈ 3500.
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ing VGG and SVMs (≈3500): 70.74% — outperforming the MFCCs

baseline: 65.49% (t-test: p-value<0.05), and performing slightly worse

than a trained CNN: 73%11 (Salamon and Bello, 2017). Finally, note

that VGGs achieved remarkable results when recognizing genres and

detecting acoustic events — tasks where timbre is an important cue.

As a result: one could argue that VGGs are good at representing

spectral features. Hence, these might be of utility for tasks where

spectral cues are relevant.

4.6 Summary and conclusions

This study builds on top of prior works showing that the (classifi-

cation) performance delivered by random CNN features is correlated

with the results of their end-to-end trained counterparts (Saxe et al.,

2011; Rosenfeld and Tsotsos, 2018). We use this property to run a

comprehensive evaluation of the main deep architectures for (music)

audio. Our method is as follows: first, we extract a feature vec-

tor from the embeddings of a randomly weighted CNN; and then,

we input these features to a classifier — which can be an SVM or

an ELM. Our goal is to compare the obtained classification accu-

racies when using different CNN architectures. The results we ob-

tain are far from random, since: (i) randomly weighted CNNs are

(in some cases) close to match the accuracies obtained by trained

CNNs; and (ii) these are able to outperform MFCCs. This result

denotes that the architectures alone are an important piece of the

deep learning solution and therefore, searching for efficient archi-

tectures capable to encode the specificities of (music) audio signals

11The same CNN achieves 79% when trained with data augmentation.
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might help advancing the state of our field. In line with that, we

have shown that (musical) priors embedded in the structure of the

model can facilitate capturing useful (temporal) cues for classifying

rhythm/tempo classes. Besides, we show that for waveform front-

ends: sample-level � frame-level many-shapes > frame-level , as noted

in the (trained) literature (Lee et al., 2018; Zhu et al., 2016; van den

Oord et al., 2016). The differential aspect of the sample-level front-

end is that its representational power is constructed via hierarchi-

cally combining small-context representations, not by exploiting prior

knowledge about waveforms. Further, we show that for spectro-

gram front-ends: 7x96<7x86, as shown in prior (trained) works (Pons

et al., 2016b; Oramas et al., 2017). By allowing the filters to con-

volve through the frequency axis, the architecture itself facilitates

capturing pitch-invariant timbral representations. Finally: timbral

(+temporal/time) and VGG spectrogram front-ends achieve remark-

able results for tasks where timbre is important — as previously

noted in the (trained) literature (Pons et al., 2017b; Choi et al.,

2016). Their respective advantages being that: (i) timbral (+tempo-

ral/time) architectures are single-layered front-ends which explicitly

capture acoustically relevant receptive fields — which can be known

via exploiting prior knowledge about the task; and (ii) VGG front-

ends require no prior domain knowledge about the task for its design.

Although our main conclusions are backed by additional results in the

(trained) literature, we leave for future work consolidating those via

doing a similar study considering trained models.
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4.7 Publications, code and contributions

Out of this research, a conference article was published:

• Jordi Pons, and Xavier Serra. “Randomly weighted CNNs for

(music) audio classification”, in 44th IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP2019).

– Code: https://github.com/jordipons/elmarc

To the best of our knowledge, this is the first comprehensive eval-

uation of randomly weighted CNNs for (music) audio classification.

Thus providing a first meta-evaluation of the most used deep learn-

ing architectures for audio. In addition, we found remarkable that

non-trained CNNs can extract discriminative audio features at all.

Particularly, we want to highlight the results achieved by the ran-

dom CNNs processing waveforms, that are just relying on random

projections to extract features from a high-dimensional signal.

Finally, we also want to highlight two minor contributions that

are closely related to the research we present along that chapter:

• Alongside with our literature review, we provide a categoriza-

tion of the main CNN architectures for audio (Figure 4.2) that

has proven to be very useful for didactic porupuses.12

• Extreme Learning Machines (ELMs) are not widely known by

music and audio researchers. We introduce ELMs to the audio

research community, and show that these can perform compe-

tently. In line with that, we also prepared a blog-post to help

to disseminate ELMs among audio researchers.13

12See these slides: www.jordipons.me/media/UPC-2018.pdf
13 www.jordipons.me/extreme-learning-machines-for-audio
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Chapter 5

Music tagging at scale

As we noted in our introductory review (Chapters 1 and 2), the lack of

data tends to limit the outcomes of deep learning research — partic-

ularly when dealing with end-to-end learning stacks processing raw

data such as waveforms. In this study, we collaborated with Pan-

dora Radio for accessing to 1.2M annotated music tracks for training

our end-to-end models. This large amount of data allowed us to

unrestrictedly explore two different design paradigms for music auto-

tagging: (i) assumption-free models — using waveforms as input with

very small convolutional filters; and (ii) models that heavily rely on

domain knowledge — log-mel spectrograms with a CNN designed

to learn timbral and temporal features (musically motivated CNNs).

Our work focuses on studying how these two types of deep architec-

tures perform when datasets of variable size are available for training:

the MagnaTagATune (25k songs), the Million Song Dataset (240k

songs), and a private dataset of 1.2M songs. Our experiments sug-

gest that music domain assumptions are relevant when not enough

training data are available, thus showing how waveform-based models

can outperform spectrogram-based ones in large-scale data scenarios.
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5.1 Introduction

One fundamental goal in music informatics research is to automat-

ically structure large music collections. The music audio tagging

task consists of automatically estimating the musical attributes of a

song — including: moods, language of the lyrics, year of composi-

tion, genres, instruments, harmony, or rhythmic traits. Thus, tag

estimates may be useful to define a semantic space that can be ad-

vantageous for automatically organizing musical libraries.

Many approaches have been considered for this task. Some of

those have been based on the feature extraction + model pipeline (Bayle

et al., 2017; Sordo et al., 2007; Prockup et al., 2015), while re-

cent publications are showing promising results using deep archi-

tectures (Dieleman and Schrauwen, 2014; Choi et al., 2016; Pons

et al., 2017b; Lee et al., 2018). In this work we confirm this trend by

studying how two deep architectures conceived considering opposite

design strategies (using domain knowledge or not) perform for sev-

eral datasets — with one of the datasets being of an unprecedented

size: 1.2M songs. Provided that a sizable amount of data is available

for that study, we investigate the learning capabilities of these two

architectures. Specifically, we investigate whether the architectures

based on domain knowledge overly constrain the solution space for

cases where large training data are available. In essence, we study if

certain architectural choices (e.g., using log-mel spectrograms as in-

put) can limit the model’s capabilities to learn from data. The main

contribution of this work is to show that little to no model assump-

tions are required for music auto-tagging when operating with large

amounts of data.
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5.2 Literature review: deep learning ar-

chitectures

In order to facilitate the discussion around the current audio archi-

tectures, we divide deep learning pipeline into two parts: front-end

and back-end (see Figure 5.1). The front-end is the part of the model

that interacts with the input signal in order to map it into a latent-

space, and the back-end predicts the output given the representation

obtained by the front-end. In the following, we present the main

front- and back-ends we identified in the literature.

Figure 5.1: The deep learning pipeline.

Front-ends1 — These are generally comprised of CNNs (Diele-

man and Schrauwen, 2014; Choi et al., 2016; Zhu et al., 2016; Pons

and Serra, 2017; Pons et al., 2017b), since these can learn efficient

representations by sharing weights2 along the signal. Front-ends can

be divided into two groups depending on the used input signal: wave-

forms (Dieleman and Schrauwen, 2014; Zhu et al., 2016; Lee et al.,

2018) or spectrograms (Choi et al., 2016; Pons and Serra, 2017; Pons

et al., 2017b). Further, the design of the filters can be either based on

domain knowledge or not. For example, one leverages domain knowl-

1This overview is closely related to the front-ends review we introduced in
Section 4, that is also presented in Pons and Serra (2019). Both depart from the
same analysis, and from the same categorization (depicted in Figure 4.2).

2Which determine the learned feature representations.
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edge when a front-end for waveforms is designed so that the length of

the filter is set to be as the window length of a STFT (Dieleman and

Schrauwen, 2014). Or for a spectrogram front-end, it is used vertical

filters to learn timbral representations (Lee et al., 2009) or horizontal

filters to learn longer temporal cues (Schlüter and Böck, 2014). Gen-

erally, a single filter shape is used in the first CNN layer (Dieleman

and Schrauwen, 2014; Choi et al., 2016; Lee et al., 2009; Schlüter and

Böck, 2014), but some recent works report performance gains when

using several filter shapes in the first layer (Zhu et al., 2016; Pons and

Serra, 2017; Pons et al., 2017b; Phan et al., 2016; Pons et al., 2016b).

Using many filters promotes a richer feature extraction in the first

layer, and facilitates leveraging domain knowledge for designing the

filters’ shape. For example: a waveform front-end using many long

filters (of different lengths) can be motivated from the perspective

of a multi-resolution time-frequency transform3 (Zhu et al., 2016); or

since it is known that some patterns in spectrograms are occurring at

different time-frequency scales, one can intuitively incorporate many

(different) vertical and/or horizontal filters in a spectrogram front-

end (Pons and Serra, 2017; Pons et al., 2017b, 2016b; Phan et al.,

2016). As seen, using domain knowledge during the design process al-

lows us to naturally connect the deep learning literature with previous

signal processing work. On the other hand, when domain knowledge

is not used, it is common to employ a deep stack of small filters, e.g.:

3×1 as in the sample-level front-end used for waveforms (Lee et al.,

2018), or 3×3 filters used for spectrograms (Choi et al., 2016). These

models based on small filters make minimal assumptions over the lo-

cal stationarities of the signal, so that any structure can be learned

3The Constant-Q Transform (Brown, 1991) is an example of such transform.
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via hierarchically combining small-context representations. These ar-

chitectures with small filters are flexible models able to potentially

learn any structure given enough depth and data.

Back-ends — Among the different back-ends used in the au-

dio literature, we identified two main groups: (i) fixed-length input

back-end, and (ii) variable-length input back-end. The generally

convolutional nature of the front-end allows it to process different

input lengths. Therefore, the back-end unit can adapt a variable-

length feature map to a fix-sized output. The former group of mod-

els (i) assume that the input will be kept constant – examples of

those are front-ends based on feed-forward neural-networks or fully-

convolutional stacks (Dieleman and Schrauwen, 2014; Choi et al.,

2016). The second group (ii) can deal with different input-lengths

since the model is flexible in at least one of its input dimensions.

Examples of those are back-ends using temporal-aggregation strate-

gies such as max-pooling, average-pooling, attention models or re-

current neural networks (Raffel, 2016). Given that songs are gen-

erally of different lengths, these types of back-ends capable to deal

with variable-length inputs are ideal candidates for music processing.

However, despite the different-length nature of music, many works

employ fixed-length input back-ends (group i) since these architec-

tures tend to be simpler and perform well (Choi et al., 2016; Pons

et al., 2017b; Dieleman and Schrauwen, 2014).

5.3 Datasets under study

We study how two different deep architectures for music auto-tagging

perform for three music collections of different sizes:
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(i) The MagnaTagATune (MTT) dataset is of≈ 26k music audio

clips of 30s (Law et al., 2009). Predicting the top-50 tags of this

dataset is a popular benchmark for music auto-tagging.

(ii) Although the Million Song Dataset (MSD) name indicates

that 1M songs are available (Bertin-Mahieux et al., 2011), audio

files with proper tag annotations (top-50 tags) are only available

for ≈ 240k previews of 30s. This dataset constitutes the biggest

public dataset available for music auto-tagging, making these

data highly appropriate for benchmarking.

(iii) A private dataset consisting of 1M songs for training, 100k for

validation, and 100k for test4 is available for this study. The

1.2M-songs dataset has 139 track-level human-expert annota-

tions that can be summarized as follows:

• Meter tags denote different sorts of musical meters (e.g., triple-

meter, cut-time, compound-duple, odd).

• Rhythmic feel tags denote rhythmic interpretation (e.g., swing,

shuffle, back-beat strength) and elements of rhythmic per-

ception (e.g., syncopation, danceability).

• Harmonic tags : major, minor, chromatic, etc.

• Mood tags express the sentiment of a music audio clip (e.g.,

if the music is angry, sad, joyful).

• Vocal tags denote the presence of vocals and timbral char-

acteristics of it (e.g., male, female, vocal grittiness).

4Test and validation sets are kept the same throughout the experiments for a
fair evaluation. All used partitions are stratified and artist-filtered.
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• Instrumentation tags denote the presence of instruments

(e.g., piano) and their timbre (e.g., guitar distortion).

• Sonority tags detail production techniques (e.g., studio,

live) and overall sound (e.g., acoustic, synthesized).

• Subgenre tags : jazz (e.g., cool, fusion, hard bop), rock

(e.g., light, hard, punk), rap (e.g., east coast, old school),

world music (e.g., cajun, indian), classical music (e.g., baroque

period, classical period), etc.

Other large (music) audio datasets exist: the Free Music Archive by

Defferrard et al. (2017) (FMA: ≈ 106k songs), and Audioset by Gem-

meke et al. (2017) (≈ 2.1M audios). Since previous works mainly used

the MTT and MSD (Choi et al., 2016; Lee et al., 2018), we employ

these datasets to assess the studied models with public data. Despite

our interest in using FMA, for brevity, we restrict our study to 3

datasets that already cover a wide range of different sizes. Finally,

Audioset is not used since most of its content is not music.

5.4 Architectures under study

After an initial exploration of the different architectures we identi-

fied in the literature, we select two models based on opposite design

paradigms: one for processing waveforms, with a design that does

minimal assumptions over the task at hand; and another for spectro-

grams, with a design that heavily relies on musical domain knowl-

edge. Our goal is to compare these two models for providing insights

in whether domain knowledge is required (or not) for designing deep

learning models. This section provides discussion around our archi-

tectural choices and introduces the basic configuration setup.
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The waveform model was selected after observing that the sample-

level front-end (using a deep stack of 3×1 filters) was remarkably

superior to the other waveform-based front ends — as shown in the

original paper Lee et al. (2018). This result is particularly compelling

because this front-end does not rely on domain-knowledge for its de-

sign. Note that raw waveforms are fed to the model without any

pre-processing, and the small filters considered for its design make

no strong assumptions over which are the most informative local sta-

tionarities in waveforms. Therefore, the sample-level can be seen as

a problem agnostic front-end that has the potential to learn any au-

dio task provided that enough depth and data are available. Given

that a large amount data is available for this study, the sample-level

front-end is of particular interest due to its strong learning potential:

its solution space is not constrained by severe architectural choices

relying on domain knowledge.

On the other hand, when experimenting with spectrogram front-

ends, we found domain knowledge intuitions to be valid guides for de-

signing deep architectures. For example, front-ends based on (i) many

vertical and horizontal filters in the first layer were consistently su-

perior to front-ends based on (ii) a single vertical filter — as shown

in recent publications (Chen and Wang, 2017; Pons and Serra, 2017;

Pons et al., 2016b; Phan et al., 2016). Note that the former front-ends

(i) can learn spectral and (long) temporal representations already in

the first layer, which are known to be important musical cues; while

the latter (ii) can only learn spectral representations. Moreover, we

observed that front-ends based on a deep stack of 3×3 filters were

achieving equivalent performances to the former front-end (i) when

input segments were shorter than 10s. We also found this behavior
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in previous works (Pons et al., 2017b). But when considering longer

inputs (which yielded better performance), the computational price

of this deeper model increases: longer inputs implies having larger

feature maps in every layer and therefore, more GPU memory con-

sumption. For that reason, we refrained from using a deep stack of

3×3 filters as a front-end — because our 12GBs of VRAM were not

enough to input 15s of audio when using a back-end. Hence, making

use of domain knowledge also provides guidance for minimizing the

computational cost of the model. Note that by using a single layer

with many vertical and horizontal filters, one can efficiently capture

the same receptive field without paying the cost of going deep. Fi-

nally, note that front-ends using many vertical and horizontal filters

in the first layer are musically motivated CNNs, and these heavily

rely on (musical) domain knowledge for their design.

After considering the previous discussion, we select the sample-

level front-end for our assumption-free model for waveforms; and we

use a spectrogram front-end with many vertical and horizontal (first-

layer) filters for the model designed considering domain knowledge.

Experiments below share the same back-end, which enables a fair

comparison among the previously selected front-ends.

Unless otherwise stated, the following specifications are the ones

used for the experiments. Throughout this chapter, we refer to these

specifications as the basic configuration.

Shared back-end — It consists of three CNN layers (with 512

filters each and two residual connections), two pooling layers and a

dense layer. In Figure 5.2 we graphically depict the shared back-

end. We introduced residual connections in our model to explore

very deep architectures, such that we can take advantage of the large
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data available. Although adding more residual layers did not drasti-

cally improve our results, we observed that adding these residual con-

nections stabilized learning while slightly improving performance (Li

et al., 2017). The used 1D-CNN filters (Dieleman and Schrauwen,

2014) are computationally efficient and shaped such that all the fea-

tures extracted by the front-end are considered across a reasonable

amount of temporal context (note the 7×M’ filter shapes, represent-

ing time×all features). We also make a drastic use of temporal pool-

ing: firstly, down-sampling x2 the temporal dimensionality of the

feature maps; and secondly, by making use of global pooling with

mean and max statistics. The global pooling strategy allows for vari-

able length inputs to the network and therefore, such a model can be

classified as a “variable-length input” back-end. Finally, a dense layer

with 500 units connects the pooled features to a sigmoidal output.

Figure 5.2: The shared back-end. M’ stands for the feature map’s ver-
tical axis, BN for batch norm, and MP for max-pool.

Waveform front-end — It is based on a sample-level front-end

(Lee et al., 2018) composed of seven stacks of: 1D-CNN (3×1 filters),

batch norm, and max pool layers — see Figure 5.3. Each layer has

64, 64, 64, 128, 128, 128 and 256 filters. For the 1.2M-songs dataset,

we use a model with more capacity having nine stacks with 64, 64,
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64, 128, 128, 128, 128, 128, 256 filters. By hierarchically combining

small-context representations and making use of max pooling, the

sample-level front-end yields a feature map for an audio segment

of 15s (down-sampled to 16kHz) which is further processed by the

previously described back-end.

Figure 5.3: The waveform front-end. BN stands for batch norm, and
MP for max-pool.

Spectrogram front-end — Firstly, audio segments are con-

verted to log-mel magnitude spectrograms (15 seconds and 96 mel

bins) and normalized to have zero-mean and unit-var. Secondly,

we use vertical and horizontal filters explicitly designed to facilitate

learning the timbral and temporal patterns present in spectrograms

(Pons et al., 2016b; Pons and Serra, 2017; Pons et al., 2017b). Note

in Figure 5.4 that the spectrogram front-end is a single-layer CNN

with many filter shapes that are grouped into two branches (Pons

et al., 2016b): (i) the top branch is designed to capture timbral

features with vertical filters (Pons et al., 2017b); and (ii) the lower

branch is designed to capture temporal features with horizontal fil-

ters (Pons and Serra, 2017). The top branch is designed to capture

pitch-invariant timbral features that are occurring at different time-

frequency scales in the spectrogram. Pitch invariance is enforced via

enabling CNN filters to convolve through the frequency domain, and

via max-pooling the feature map across its vertical axis (Pons et al.,

2017b). Note that several filter shapes are used to efficiently capture
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Figure 5.4: The musically motivated spectrogram front-end. MP stands
for max-pool.

many different time-frequency patterns: 7×86, 3×86, 1×86, 7×38,

3×38 and 1×385 — to facilitate learning, e.g.: kick-drums (with

small-rectangular filters of 7×38 capturing sub-band information for

a short period of time), or string ensemble instruments (with long

vertical filters of 1×86 which are capturing timbral patterns spread

in the frequency axis). The lower branch is meant to learn tempo-

ral features, and is designed to efficiently capture different time-scale

representations by using several long filter shapes (Pons and Serra,

2017): 165×1, 128×1, 64×1 and 32×1.6 These filters operate over

an energy envelope (not directly over the spectrogram) obtained via

mean-pooling the frequency-axis of the spectrogram. By computing

the energy envelope in that way, we are considering high and low fre-

quencies together while minimizing the computations of the model.

Note that no frequency/vertical convolutions are performed, but we

only perform 1D (temporal) convolutions. Thus, domain knowledge is

5Each filter shape has 16, 32, 64, 16, 32 and 64 filters, respectively.
6Each filter shape has 16, 32, 64 and 128 filters, respectively.
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providing guidance to minimize the computational cost of the model.

The output of these two branches is concatenated, and the previously

described back-end is used for going deeper.

Parameters — 50% dropout before every dense layer, ReLUs

as non-linearities, and our models are trained with SGD employing

Adam (with an initial learning rate of 0.001) as optimizer. We mini-

mize the MSE for the 1.2M-songs dataset, but we minimize the cross

entropy for the other datasets. During training our data are converted

to audio patches of 15s, but during prediction one aims to consider

the whole song. To this end, several predictions are computed for

a song (by a moving window of 15s) and then averaged. Although

our models are capable of predicting tags for variable-length inputs,

we use fixed length patches since in preliminary experiments we ob-

served that predicting the whole song at once yielded worse results

than averaging several patch predictions. In future work we aim to

further study this behavior, to find ways to exploit the fact that the

whole song is generally available at inference time.

5.5 Experimental results

Along that study, we investigate how two deep learning architec-

tures conceived considering opposite design strategies (using domain

knowledge or not) perform for several datasets. First, we assess how

these models scale with a dataset of 1.2M songs. Then, we study how

these architectures perform for a small public dataset (MTT of ≈ 25k

songs). And finally, we validate the proposed architectures with the

biggest public dataset available (MSD of ≈ 240k songs).
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5.5.1 1.2M-songs dataset

Experimental setup — A careful inspection of the dataset re-

veals that, among tags, two different data distributions dominate

the annotations: (i) tags with bi-modal distributions, where most of

the annotations are zero, which can be classified; and (ii) tags with

pseudo-uniform distributions that can be regressed.7 A regression tag

example is acoustic, which indicates how acoustic a song is — from

zero to one, zero being an electronic music song and one a string

quartet. And a classification tag example can be any genre — for

example, most songs will not be cataloged as rap since the dataset is

large and its taxonomy contains dozens of genres.

We set as baseline a system consisting of a music feature extractor

(in essence: timbre, rhythm, and harmony descriptors) and a model

based on gradient boosted trees (GBT) for predicting each of the tags

(Prockup et al., 2015). By predicting each tag individually, one aims

to turn a hard problem into multiple (hopefully simpler) problems.

We use two sets of performance measurements8: ROC-AUC and

PR-AUC for the classification tags, and error (
√
MSE) for the re-

gression tags. ROC-AUC can lead to over-optimistic scores in cases

where data are unbalanced (Davis and Goadrich, 2006). Given that

classification tags are highly unbalanced, we also consider the PR-

AUC metric since it is more indicative than ROC-AUC in these cases

(Davis and Goadrich, 2006). For ROC-AUC and PR-AUC, the higher

the score the better. But for
√
MSE, the lower the better. The

studied spectrogram and waveform models are set following the basic

7Note that all output nodes are sigmoidal – i.e., we treat classification tags as
regression tags for simplicity’s sake.

8ROC: Receiver Operating Characteristic. PR: Precision Recall. AUC: Area
Under the Curve. MSE: Mean Squared Error.
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configuration — and are composed of 5.9M and 5.5M parameters,

respectively. Given the unprecedented size of the dataset, we focus

on how these models scale when trained with different amounts of

data: 100k, 500k, or 1M songs. Average results (across 3 runs) are

shown in Table 5.1 and in Figure 5.5.

Table 5.1: 1.2M-songs average results (3 runs) when using different
training-set sizes. Baseline: GBTs+features (Prockup et al., 2015).

1.2M-songs train ROC PR

Models size AUC AUC
√

MSE

Baseline 1.2M 91.61% 54.27% 0.1569
Waveform 1M 92.50% 61.20% 0.1465
Spectrogram 1M 92.17% 59.92% 0.1473
Waveform 500k 91.16% 56.42% 0.1504
Spectrogram 500k 91.61% 58.18% 0.1493
Waveform 100k 90.27% 52.76% 0.1554
Spectrogram 100k 90.14% 52.67% 0.1542

Figure 5.5: Linear regression fit on the 1.2M-songs results.

Quantitative results — Training the models with 100k songs

took a few days, with 500k songs one week, and with 1M songs less

than two weeks. The deep learning models trained with 1M tracks
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achieve better results than the baseline in every metric. However, the

deep learning models trained with 100k tracks perform worse than

the baseline. This result confirms that deep learning models require

large datasets to clearly outperform strong methods based on feature-

design — although note that large datasets are generally not available

for most audio tasks. Moreover, the biggest performance improve-

ment w.r.t. the baseline is seen for PR-AUC, which provides a more

informative picture of the performance when the dataset is unbal-

anced (Davis and Goadrich, 2006). In addition, the best performing

model is based on the waveform front-end — which is capable of out-

performing the spectrogram model in every metric when trained with

1M songs. This result confirms that waveform sample-level front-ends

have a great potential to learn from large data, since their solution

space is not constrained by any domain-knowledge inspired archi-

tectural choice. In line with that, note that the architectural choices

defining the spectrogram front-end might be severely constraining the

solution space. While these architectural constraints are not harmful

when training data are scarce —as for the 100k/500k songs results, or

in prior works (Sainath et al., 2015)—, such a strong regularization

of the solution space may limit the learning capacity of the model

in scenarios where large training data are available (as for the 1M

songs results). One can observe this in Figure 3, where we fit linear

models to the obtained results to further study this behavior. When

100k training songs are available: trend lines show that spectrogram

models tend to perform better. However, when 1M training songs are

available: the lines show that waveform models outperform the spec-

trogram ones. It is worth mentioning that the observed trends are

consistent throughout metrics: ROC-AUC, PR-AUC, and
√
MSE.
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Finally, note that there is room for improving the models under study.

For example, one could address the data imbalance problem during

training, or improve the back-end via exploring alternative temporal

aggregation strategies.

Qualitative results — Since it is the first report of a deep music

tagging model trained with such a large dataset, we also perceptu-

ally assess the quality of the estimates. To this end, we compared the

predictions of one of our best performing models to the predictions of

the baseline, and to the human-annotated ground-truth tags. Some

interesting examples identified during this qualitative experiment are

available online.9 First, we observed that the deep learning model

is biased towards predicting the popular tags (such as lead vocals,

English or male vocals). Note that this is expected since we are not

addressing the data unbalancing issue during training. And second,

we observe that the baseline model (which predicts the probability of

each tag with an independent GBT model) predicts mutually exclu-

sive tags with high confidence. For example, the baseline predicted

with high scores: East Coast & West Coast for an East Cost rap song,

or baroque period & classic period for a Bach aria. However, the deep

learning model (predicting the probability of all tags together) was

able to better differentiate these similar but mutually exclusive tags.

This suggests that deep learning has an advantage when compared to

traditional approaches, since these mutually exclusive relations can

be jointly encoded within the model.

9www.jordipons.me/apps/music-audio-tagging-at-scale-demo
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5.5.2 MagnaTagATune dataset

Experimental setup — State-of-the-art models are set as base-

lines, and we use the same (classification) performance metrics as for

the 1.2M-songs dataset: ROC-AUC and PR-AUC, because note that

the MTT labels are binary. One of the baseline results, the Sam-

pleCNN by Lee et al. (2018) with 90.55 ROC-AUC, was computed

using a slightly different version of the MTT dataset — which only

includes songs having more than 1 tag and lasting more than 29.1 sec-

onds. As a result, this cleaner version of the MTT dataset is of ≈21k

songs instead of ≈25k. Although this dataset cleans out potential

noisy annotations, we decided to use the original dataset to easily

compare our results with former works. Thus, to fairly compare our

models with the SampleCNN, we reproduce their work considering

the original dataset — achieving a score of 88.56 ROC-AUC. Given

that less noise is present in the SampleCNN dataset, it seems reason-

able that their performance is higher than the one obtained by our

implementation.

The MTT experiments can be divided in two parts: waveform and

spectrogram models, see Tables 5.2 and 5.3. Due to the amenable

size of the dataset (every MTT experiment lasts < 5h), it is feasi-

ble to run a comprehensive study investigating different architectural

configurations. Specifically, we study how waveform and spectrogram

architectures behave when modifying the capacity of their front- and

back-ends. For example, the experiment “# filters ×1/2” in Ta-

ble 5.2 consists of dividing by two the number of filters available in

the waveform front-end. This means having 32, 32, 32, 64, 64, 64

and 128 filters, instead of the 64, 64, 64, 128, 128, 128 and 256 fil-

ters in the basic configuration. We also apply this methodology to
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the spectrogram front-ends, and we add/remove capacity to them by

increasing/decreasing the number of available filters. After running

the front-end experiments with a fixed back-end (following the basic

configuration: 512 CNN filters, 500 output units), we select the most

promising ones to proceed with the back-end study. For waveforms,

we selected: “# filters ×2”.10 And for spectrograms, we selected:

“# filters ×1/2”. Having now a fixed front-end for every experiment,

we modify the capacity of the back-end via changing the number of

filters in every CNN layer (512, 256, 128, 64) and changing the num-

ber of output units (500, 200). Since the basic configuration leads to

relatively big models for the size of the dataset, these experiments

explore smaller back-ends. The inputs for the MTT are set to be of 3

seconds, since longer inputs tend to yield worse results (Pons et al.,

2017b; Lee et al., 2018).

Quantitative results — The waveform and spectrogram models

we study outperform the proposed baselines, which are representative

of the current state-of-the-art. Further, performance is quite robust

to the number of parameters of the model. Although the best re-

sults are achieved by models having higher capacity, the performance

difference between small and large models is minor — what means

that relatively small models (which are easier to deploy) can do a

reasonable job when tagging the MTT music. Finally: spectrogram

models perform better than waveform models for this small pub-

lic dataset. This result aligns with previous works using datasets of

similar size (Pons et al., 2017b; Pons and Serra, 2017). Consequently,

it confirms that domain knowledge intuitions are valid guides for de-

signing deep architectures in scenarios where training data are scarce.

10“# filters ×2” front-end was selected instead of “# filters ×4”, because it
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Table 5.2: MTT results: waveform models. † Result computed with a
different MTT version, see section 5.5.2.

MTT dataset ROC PR #
Waveform models AUC AUC param

State-of-the-art results – with our own implementations
SampleCNN by Lee et al. (2018)† 90.55 - 2.4M
SampleCNN (reproduced) 88.56 34.38 2.4M
Dieleman and Schrauwen (2014) 84.87 - -
Dieleman and Schrauwen (reproduced) 85.58 29.59 194k

How much capacity is required for the front-end?
# filters ×4 89.05 34.92 11.8M
# filters ×2 (selected) 88.96 34.74 7M
# filters ×1 88.9 34.18 5.3M
# filters ×1/2 88.69 33.97 4.7M
# filters ×1/4 88.47 33.89 4.4M

How much capacity is required for the back-end?
# filters in every CNN layer - # units in dense layer

64 CNN filters - 500 units 88.57 33.99 1.3M
- 200 units 88.94 34.47 1.3M

128 CNN filters - 500 units 88.82 34.62 1.8M
- 200 units 88.81 34.6 1.7M

256 CNN filters - 500 units 88.95 34.27 3.1 M
- 200 units 88.59 34.39 2.9M

512 CNN filters - 500 units 88.96 34.74 7M
- 200 units 88.3 34.05 6.7M
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Table 5.3: MTT results: spectrogram models. † Reproduced using 96
mel bands instead of 128 as in Pons et al. (2017b).

MTT dataset ROC PR #
Spectrogram models AUC AUC param

State-of-the-art results – with our own implementations
VGG by Choi et al. (2016) 89.40 - 22M
VGG (reproduced) 89.99 37.56 450k
Timbre CNN by Pons et al. (2017b) 89.30 - 191k
Timbre CNN (reproduced) † 89.07 34.92 220k

How much capacity is required for the front-end?
# filters ×1/8 90.08 37.18 4.4M
# filters ×1/4 90.12 37.69 4.6M
# filters ×1/2 (selected) 90.40 38.11 5M
# filters ×1 90.31 37.79 5.9
# filters ×2 90.07 37.29 7.6M

How much capacity is required for the back-end?
# filters in every CNN layer - # units in dense layer

64 CNN filters - 500 units 90.03 36.98 277k
- 200 units 90.28 37.55 222k

128 CNN filters - 500 units 90.16 37.61 617k
- 200 units 90.28 37.69 524k

256 CNN filters - 500 units 90.18 37.98 1.6M
- 200 units 90.06 37.16 1.4M

512 CNN filters - 500 units 90.40 38.11 5M
- 200 units 89.98 37.05 4.7M
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Table 5.4: MSD results. Top – waveform-based models.
Bottom – spectrogram-based models.

MSD ROC PR #
Models AUC AUC param

Waveform (ours) 87.41 28.53 5.3M
SampleCNN by Lee et al. (2018) 88.12 - 2.4M
SampleCNN multi-level

88.42 - -
& multi-scale by Lee et al. (2018)

Spectrogram (ours) 88.75 31.24 5.9M
VGG + RNN by Choi et al. (2017a) 86.2 - 3M
Multi-level &

88.78 - -
multi-scale by Lee and Nam (2017)

5.5.3 Million Song Dataset

Experimental setup — State-of-the-art models are set as base-

lines, and we use the same (classification) performance metrics as for

the 1.2M-songs dataset: ROC-AUC and PR-AUC, because note that

the MSD labels are binary. These experiments aim to validate the

studied models with the biggest public dataset available. Models are

set following the basic configuration, and the results are in Table 5.4.

Quantitative results — The spectrogram model outperforms

the waveform model for this public dataset of ≈ 200k training songs.

Furthermore, the spectrogram model performs equivalently to ‘Multi-

level & multi-scale’ (Lee and Nam, 2017), which is the best per-

forming method in the literature — denoting that musical knowledge

can be of utility to design models for the MSD. Additionally, the

waveform model performs worse than other waveform-based models

that also employ sample-level front-ends. Such performance decrease

performs similarly with less parameters.
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could be caused because (i) SampleCNN methods (Lee et al., 2018)

average ten11 estimates for the same song to compensate for possi-

ble faults in song-level predictions, while our method only averages

two — via predicting consecutive patches of 15 seconds; or (ii) be-

cause the major difference between original SampleCNN and our

waveform model is that the latter employs a global pooling strategy

that could remove potentially useful information for the model. Be-

sides, the best performing waveform-based model, the ‘SampleCNN

multi-level & multi-scale’ by Lee et al. (2018), also achieves lower

scores than the best performing spectrogram-based ones. Consider-

ing the remarkable results we report when the waveform model is

trained with 1M songs, one could argue that the lack of larger public

datasets is limiting the outcomes of deep learning research for music

auto-tagging — particularly when dealing with end-to-end learning

stacks processing raw data such as waveforms.

5.6 Summary and conclusions

This study presents the first work describing how different deep mu-

sic auto-tagging architectures perform depending on the amount of

available training data. We also present two architectures that yield

results on par with the state-of-the-art. These architectures are based

on two conceptually different design principles: one is based on a

waveform front-end, and no domain knowledge inspired its design;

and the other, with a spectrogram front-end, makes use of (musi-

cal) domain knowledge to justify its architectural choices. While our

results suggest that models relying on domain knowledge play a rele-

11Since MSD audios are of 30 seconds, ten tag estimates per song can be
obtained via running the model with consecutive patches of 3 seconds.
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vant role in scenarios where no sizable datasets are available, we have

shown that, given enough data, assumption-free models processing

waveforms outperform those that rely on musical domain knowledge.

5.7 Publications, code and contributions

Our main contribution is to study, for the first time, how different

deep learning architectures for music audio tagging perform when

trained with a very large dataset of 1M training songs. Out of this

research, a workshop and a conference article were published:

• Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt,

Andreas F. Ehmann, and Xavier Serra. “End-to-end learning

for music audio tagging at scale”, presented at the Workshop

on Machine Learning for Audio Signal Processing (ML4Audio)

in NIPS 2017, and at the 19th International Society for Music

Information Retrieval Conference (ISMIR2018).

– This work was acknowledged with the best student paper

award during ISMIR 2018.

– Work done during my internship at Pandora Radio. Thanks

to all my collaborators there: Oriol Nieto, Matthew Prockup,

Erik M. Schmidt, and Andreas F. Ehmann. Especially, in-

finite thanks to Oriol Nieto — who was my mentor and

close collaborator during that project.

– The code is accessible online.12

– A demonstration is also accessible online.13

12https://github.com/jordipons/music-audio-tagging-at-scale-models
13www.jordipons.me/apps/music-audio-tagging-at-scale-demo
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Chapter 6

Audio tagging with few

training data

After studying (in Chapter 5) how different deep learning architec-

tures for music audio tagging perform when trained with a dataset of

an unprecedented size, we now take a look into the low-data regime.

We investigate supervised learning strategies that improve the train-

ing of neural network audio classifiers on small annotated collections.

In particular, we study whether (i) a naive regularization of the so-

lution space, (ii) prototypical networks, (iii) transfer learning, or

(iv) their combination, can foster deep learning models to better

leverage a small amount of training examples. To this end, we eval-

uate (i–iv) for the tasks of acoustic event recognition and acoustic

scene classification, considering from 1 to 100 labeled examples per

class. Results indicate that transfer learning is a powerful strategy

in such scenarios, but prototypical networks show promising results

when one does not count with external or validation data.
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6.1 Introduction

It exists a prominent corpus of research assuming that sizable amounts

of annotated audio data are available for training end-to-end classi-

fiers (Hershey et al., 2017; Pons et al., 2018). These studies are

mostly based on publicly-available datasets, where each class typi-

cally contains more than 100 audio examples (Fonseca et al., 2019,

2017; Mesaros et al., 2016; Salamon et al., 2014b). Contrastingly,

only few works study the problem of training neural audio classifiers

with few audio examples (Bocharov et al., 2017; Tilk, 2018; Morfi and

Stowell, 2018b,a). In this work, we study how a number of neural

network architectures perform in such situation. Two primary rea-

sons motivate our work: (i) given that humans are able to learn novel

concepts from few examples, we aim to quantify up to what extent

such behavior is possible in current neural machine listening systems;

and (ii) provided that data curation processes are tedious and expen-

sive, it is unreasonable to assume that sizable amounts of annotated

audio are always available for training neural network classifiers.

The challenge of training neural networks with few audio data has

been previously addressed. For example, Morfi and Stowell (2018b)

approached the problem via factorising an audio transcription task

into two intermediate sub-tasks: event and tag detection. Another

way to approach the problem is by leveraging additional data sources,

like in unsupervised and semi-supervised frameworks where non-labelled

data is also utilized (Jansen et al., 2017; Lee et al., 2009; Xu et al.,

2017). Transfer learning is also a popular way to exploit such ad-

ditional data sources (Kunze et al., 2017; Choi et al., 2017b), and

it has been used to construct acoustic models for low-resource lan-

guages (Ghoshal et al., 2013; Huang et al., 2013), to adapt genera-
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tive adversarial networks to new languages and noise types (Pascual

et al., 2018), or to transfer knowledge from the visual to the audio

domain (Aytar et al., 2016). An additional alternative is to use data

augmentation, which has proven to be very effective for audio classi-

fication tasks (Salamon and Bello, 2017; Mun et al., 2017). However,

in this work, we center our efforts into exploiting additional data re-

sources with transfer learning. This, according to our view, has three

main advantages: (i) differently to data augmentation, it allows lever-

aging external sources of data; (ii) it exists a rich set of techniques

for learning transferable representations that one can employ (Kunze

et al., 2017; Huang et al., 2013; Aytar et al., 2016); and (iii) transfer

learning can always be further extended with data augmentation.

In parallel to previous works, the machine learning community has

been developing methods for learning novel classes from few training

instances, an area known as few-shot learning (Tilk, 2018; Snell et al.,

2017; Ravi and Larochelle, 2016; Vinyals et al., 2016). These methods

aim to build a classifier that generalizes to new classes not seen dur-

ing training, given only a small number of training examples for each

new class. Differently to few-shot learning, the models we study do

not generalize to new classes. Instead, we assume a fixed taxonomy

during both training and prediction. Still, we derive inspiration from

few-shot learning for their capacity to learn from few training data. A

popular approach to few-shot learning is metric learning, which aims

to learn representations that preserve the class neighborhood struc-

ture so that simple distances can be measured in a learnt space (Snell

et al., 2017; Vinyals et al., 2016). Such methods have been mostly

used for image classification, and are very appealing due to their

simplicity and yet powerful performance on several benchmarks.
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In our study we consider prototypical networks (Snell et al., 2017),

a metric learning approach that is based on computing distances

against class-based prototypes defined in a learnt embedding space

(one can think of it as a nearest-neigbour classifier trained end-to-

end). Our aim is to study if prototypical networks are capable to gen-

eralize better than raw deep learning models when trained on small

data. To the best of our knowledge, only Tilk (2018) has explored

metric learning methods for constructing neural audio classifiers. He

used the last layer features of a siamese network (Bromley et al.,

1994), an alternative metric learning approach, as input to an SVM

classifier. Therefore, our work can be considered the first one to em-

ploy prototypical networks for audio. Besides, back in the 80’s, Ko-

honen (1988) proposed a distance-based model for speech recognition

called learning vector quantization (LVQ), which is closely related to

prototypical networks. However, LVQ is not designed to learn from

few data and, furthermore, does not exploit the powerful non-linear

mapping that neural networks can provide.

In this work, we investigate which strategies can provide a perfor-

mance boost when neural network audio classifiers are trained with

few data. These are evaluated under different low-data situations,

which we describe in section 6.2. Firstly, we consider the regulariza-

tion of the traditional deep learning pipeline (section 6.3.1). Next,

we consider prototypical networks, with the aim to showcase the po-

tential of metric learning-based classifiers coming from the few-shot

learning literature (section 6.3.2). Finally, we consider transfer learn-

ing as a canonical way to leverage external sources of audio data (sec-

tion 6.3.3). Results are presented in section 6.4 and, to conclude, we

provide further discussion in section 6.5.
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6.2 Methodology

6.2.1 Data: Where is the validation set?

The focus of this work is to investigate which neural network-based

strategies perform best in the low-data regime. To do so, we simulate

classification scenarios having only n randomly selected training au-

dios per class, n ∈ {1, 2, 5, 10, 20, 50, 100}. Since results of the same

repeated experiment might vary depending on which audios are se-

lected, we run each experiment m times per fold of data, and report

average accuracy scores across runs and folds. Specifically, we run

the following experiments: m = 20 when n ∈ {1, 2}, m = 10 when

n ∈ {5, 10}, and m = 5 when n ∈ {20, 50, 100}.

We run the study for both the tasks of acoustic event recogni-

tion and acoustic scene classification. For acoustic event recognition,

we employ the UrbanSound8K dataset (US8K) by Salamon et al.

(2014b), featuring 8,732 urban sounds divided into 10 classes and

10 folds (with roughly 1000 instances per class). For acoustic scene

classification, we resort to the TUT dataset (ASC-TUT) by Mesaros

et al. (2016, 2017), featuring 4,680 audio segments for training and

1,620 for evaluation, of 10 s each, divided into 15 classes (with 312 in-

stances per class). Furthermore, and we consider this a crucial aspect

of our work, we assume that data is so scarce that it is unreasonable to

presuppose the existence of a validation set for deciding when to stop

training. As a result of such constraint, the following sections also

describe the rules we use to decide when to stop training. Besides re-

ducing the train set size and not utilizing any validation set, we keep

the original partitions to compare our results with previous works.
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6.2.2 Baselines

To put results into context, we employ several baselines aiming to

describe lower and upper bounds for the two tasks we consider:

• Random guess: A model picking a class at random, which

scores 9.99% accuracy for US8K and 6.66% for ASC-TUT.

• Nearest-neighbor MFCCs: A model based on a nearest-

neighbor classifier using the cosine distance over MFCC fea-

tures. The feature vector is constructed from 20 MFCCs, their

∆s, and ∆∆s. We compute their mean and standard deviation

through time, what results in a feature vector of size 120.

• Salamon and Bello (2017) (SB-CNN): This model achieves

state-of-the-art results for US8K. When trained with all US8K

training data it achieves an average accuracy score of 73%

across folds (79% with data augmentation). SB-CNN is a model

that consists of 3 convolutional layers with filters of 5×5, in-

terleaved with max-pool layers. The resulting feature map is

connected to a softmax output via a dense layer of 64 units.

To assess how standard deep learning models would perform

when learning their weights from scratch with small data, we

train this baseline with different amounts of training data n.

• Han et al. (2017b) and Mun et al. (2017): These deep

learning-based models achieve state-of-the-art performance for

ASC-TUT. When trained with all ASC-TUT training data,

they achieve accuracy scores of 80.4% via using an ensem-

ble (Han et al., 2017b), and 83.3% via using an ensemble trained

with GAN-based data augmentation (Mun et al., 2017).
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6.2.3 Training details

Unless stated otherwise, the sections below follow this same experi-

mental setup. Following common practice (Salamon and Bello, 2017),

inputs are set to be log-mel spectrogram patches of 128 bins× 3 s

(128 frames)1. For US8K, when audio clips are shorter than 3 s, we

‘repeat-pad’ spectrograms in order to meet the model’s input size.

That is, the original short signal is repeated up to create a 3 s signal.

During training, data are randomly sampled from the original log-mel

spectrograms following the previous rules. However, during predic-

tion, if sounds are longer than 3 s, several predictions are computed

by a moving window of 1 s and then averaged. We use ReLUs and a

batch size of 256. Learning proceeds via minimizing the cross-entropy

loss with vanilla stochastic gradient descent (SGD) at a rate of 0.1.

We stabilize learning with gradient clipping, that is, we rescale the

gradients so that their L2 norm does never exceed a threshold of 5.

6.3 Audio classification with few data

6.3.1 Regularized models

In a first set of experiments, we showcase the limitations of the com-

monly used deep learning pipeline when training data are scarce.

An ordinary approach to avoid overfitting in such cases is to use

regularization. Following this idea, we consider two architectures.

The first one, VGG, is meant to keep the model highly expressive

while introducing as much regularization as possible. The second

one, TIMBRE, strongly regularizes the set of possible solutions via

domain-knowledge informed architectural choices.

1STFT parameters: window size=hop size=1024 and fs=44.1 kHz.
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• VGG: This is a computer vision architecture designed to make

minimal assumptions regarding which are the local stationar-

ities of the signal, so that any structure can be learnt via hi-

erarchically combining small-context representations (Hershey

et al., 2017). To this end, it is common to utilize a deep stack

of small 3× 3 filters (in our case 5 layers, each having only

32 filters), combined with max-pool layers (in our case of 2×2).

We further employ a final dense layer with a softmax activa-

tion that adapts the feature map size to the number of output

classes. We use batch norm, and ELUs as non-linearities.

• TIMBRE: This model is designed to learn timbral representa-

tions while keeping the model as small as possible (Pons et al.,

2017b). We use a single-layer CNN with vertical filters of

108 bins × 7 frames. A softmax output is computed from the

maximum values present in each CNN feature map and, there-

fore, the model has as many filters as output classes. TIMBRE

is possibly the smallest CNN one can imagine for audio classifi-

cation, provided that it only has a single ‘timbral’ filter per class.

Note that the studied VGG and TIMBRE models (of ≈ 50 k and

10 k parameters, respectively), are much smaller than the state-of-

the-art SB-CNN model, which has ≈ 250 k parameters. Besides the

regularization we introduce via minimizing the model size, we employ

L2-regularization, with a penalty factor of 0.001, and make use of 50%

dropout whenever a dense layer is present (only VGG and SB-CNN

models have dense layers). Finally, and given that no validation set

is available, we empirically find that (early) stopping training after

200 epochs provides good results for all studied models that are not

based on prototypical networks.
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6.3.2 Prototypical networks

In the next set of experiments, we study how prototypical networks

can be exploited for audio classification with few examples. As men-

tioned, prototypical networks are based on learning a latent metric

space in which classification can be performed by computing distances

to prototype representations of each class. Prototypes µk are mean

vectors of the embedded support data belonging to the class k. That

is, given input samples xi:

µk =
1

|Sk|
∑
xi∈Sk

fφ(xi), (6.1)

where fφ is parametrized by a neural network. In our case, we use

a VGG as in section 6.3.1, but with 128 filters per layer and a final

linear layer instead of a softmax. The prototype vector µk ∈ RD is

set to have an embedding size of D = 10. In this work, the support

set Sk to compute each class’ prototype is conformed by 5 randomly

selected patches from the train set belonging to class k. These same

sounds will be then reused to train fφ.

Prototypical networks produce a distribution over classes for a

query point xi based on a softmax over distances to the prototypes

in the embedding space:

pk(xi) =
e−d(fφ(xi),µk)∑
k′ e
−d(fφ(xi),µk′ )

, (6.2)

where d is any suitable distance measure. We here use the Euclidean

distance as we found it to outperform the cosine distance for our

tasks, see Section 6.4.1. The training of fφ is based on minimiz-
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ing the negative log-probability of the true class via SGD. Training

epochs are formed by batches of 5 random patches per class, and

we backpropagate until the train set accuracy does not improve for

200 epochs. Note that this stop criteria does not utilize a validation

set, only the train set. Differently from the common supervised learn-

ing pipeline, we found overfitting not to be an issue with prototypical

networks — which is an important point to consider when training

models with few data. Actually, monitoring how well the model is

able to separate the training data in the embedding space, through

measuring train set accuracy, was an effective way to assess how dis-

criminative such space is. Although this stop criteria could promote

overfitting the train set, in Section 6.4 we show that prototypical

networks’ generalization capabilities are still above the ones of the

raw deep learning pipeline. Further discussion on the generalization

capabilities of prototypical networks is available in Section 6.4.2.

6.3.3 Transfer learning

In our final set of experiments, we assess the effectiveness of canonical

transfer learning strategies. For that, we use a VGG model pre-

trained with Audioset (Hershey et al., 2017; Gemmeke et al., 2017),

a dataset conformed by 2 M YouTube audios that was designed for

training acoustic event recognition models. As a result, note that our

source and target tasks are the same for US8K (all US8K classes have

a direct correspondence in Audioset), but are different for ASC-TUT

(only 5 out of 15 classes resemble Audioset classes). The pre-trained

Audioset model2 is composed of 6 convolutional layers with filters of

3×3, interleaved with max-pooling layers of 2×2, followed by 3 dense

2https://github.com/tensorflow/models/tree/master/research/audioset
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layers of 4096, 4096, and 128 units. Inputs are log-mel spectrogram

patches of 64 bins × 1 s (96 frames)3. In order to match the same

conditions as previous experiments for inputs longer than 1 s, we

compute several predictions by a non-overlapping moving window of

1 s that are finally averaged. When audios are shorter than 1 s, we

use ‘repeat-pad’ as in previous experiments (see Section 6.2.3).

In order to study how the pre-trained Audioset model transfers

to our tasks, we consider three alternatives:

• Nearest-neighbor with Audioset features: This baseline

classifier serves to study how discriminative are the Audioset

features alone. It is based on the cosine distance, and utilizes

majority voting to aggregate the different predictions of the

model through time (one per second of audio).

• Transfer learning (fine-tuning): The pre-trained Audioset

model is fine-tuned, together with a dense softmax layer that

acts as the final classifier.

• Prototypical networks + transfer learning: We experi-

ment with the idea of using transfer learning in the context of

prototypical networks, and we fine-tune the pre-trained model

together with a dense linear layer (10 units) that defines the

embedding space where the distance-based classifier operates.

For all transfer learning experiments, in order to avoid pre-trained

layers to quickly overfit the train set, fine-tuning occurs at a slower

pace than training the classification or embedding layer. We use a

learning rate of 0.00001 for the pre-trained layers, and a learning rate

of 0.1 for randomly initialized layers.
3STFT parameters: window size=400, hop size=160 and fs=16 kHz
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6.4 Experimental results

Figure 6.1 summarizes the results we obtain for the two datasets

considered in this work: US8K (first row) and ASC-TUT (second

row). On the left-hand side, we compare the results of the regularized

models with the ones of prototypical networks. On the right-hand

side, we compare the results of transfer learning with the ones of

prototypical networks. For each study case, we depict a lower bound

(random guess) and an upper bound (previous state-of-the-art works

using all the train set, see Section 6.2.2). In addition, we include a

basic baseline consisting of a nearest neighbor classifier. All baselines

and references are depicted with dashed and dotted lines.

First of all, we elaborate on the results obtained by the standard

and regularized deep learning models, namely SB-CNN, VGG, and

TIMBRE (Figure 6.1, left). All these models perform similarly when

few training data are available (n < 50). Even so, it is remarkable

the performance of the strongly-regularized TIMBRE model for the

US8K dataset, as this outperforms the other two and the MFCC

baseline when n ≤ 10. Notice, however, that the trend changes when

more data becomes avilable (n > 20). Under this data regime, the

expressive VGG model seems to better exploit the available data. Fi-

nally, it is also interesting to observe the limitations of the commonly

used deep learning pipeline when few training data are available, as

the SB-CNN and regularized models struggle to clearly outperform

a simple nearest-neighbor MFCC baseline for n ≤ 20.

In order to overcome the abovementioned limitations of standard

and regularized deep learning models, we investigate the use of proto-

typical networks. Figure 6.1 (left) depicts how they consistently out-
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Figure 6.1: Accuracy (%) of the studied strategies when compared to
prototypical networks. Dashed and dotted lines represent baselines, and
strong lines represent the considered strategies. For comparison, we repeat

the curve for prototypical networks in both left and right plots.
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perform raw deep learning models, both for US8K and ASC-TUT.

Although performance gains are moderate for n < 5, prototypical

networks clearly outperform regularized models for 5 < n < 50. In-

terestingly, though, the performance of prototypical networks can

saturate for n > 50, see US8K results. This suggests that proto-

typical networks may not be as competitive as regular deep learning

architectures when sizable amounts of training data are available.

However, such tendency could be data-dependent, as it is not ob-

served for ASC-TUT.

Note that the prototypical networks’ embedding space is defined

by a larger VGG than the regularized VGG model. Hence, proto-

typical networks could seem to be more prone to overfitting than

regularized models. However, we find that prototypical networks do

generalize better than standard and regularized models in the low

data regime (Figure 6.1, left). Since overfitting seems not to dra-

matically affect prototypical networks’ results, we find that highly

expressive models (like a large VGG) can deliver good results. We

speculate that this might be caused because the resulting latent space

is competent enough to discriminate each of the classes, whereas for

smaller and less expressive models this might not be the case.

In our study, we also investigate how transfer learning approaches

compare with the previous solutions (Figure 6.1, right). We observe

that, for n ≥ 10, transfer learning with basic fine-tuning performs

equivalently to prototypical networks + transfer learning. However,

for n < 10, the former outperforms the latter. We speculate that this

effect emerges when prototypes trained with small data are not repre-

sentative enough of their corresponding classes. Remember that the

support set to compute each class’ prototype is conformed by 5 ran-
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domly selected patches from the train set. As a result, for example,

when n = 1 these 5 patches are sampled from the same spectro-

gram and then reused for training fφ. Consequently, the variety of

the training examples used for computing the prototypes can be very

limited for n < 10, what might be harming the results of prototypical

networks. Interestingly, though, for n ≥ 10 we observe that proto-

typical networks + transfer learning start performing equivalently to

transfer learning with fine-tuning. Note that n = 10 is the first sce-

nario where prototypical networks can be trained with data being

variate enough, since 5 examples can be used for computing the pro-

totypes and 5 additional examples can be used for training fφ (see

section 6.3.2).

Finally, it is worth reminding that source and target tasks are the

same for US8K but are different for ASC-TUT. Possibly for that rea-

son, transfer learning consistently outperforms prototypical networks

for US8K, but struggles to do so for ASC-TUT. For the latter dataset,

we see that prototypical networks (trained from scratch with n ≤ 100

instances) are able to outperform transfer learning-based approaches

(pretrained with 2 M audios) for n > 20. This result denotes that

transfer learning has a strong potential when small data are available

(n ≤ 20). However, transfer learning can be easily overthrown by

prototypical networks if the number of training examples per class

becomes large enough, and target and source tasks do not match.

6.4.1 Prototypical networks distance:

Euclidean vs. cosine

While previous researchers (Ravi and Larochelle, 2016; Vinyals et al.,

2016) employed the cosine distance for few-shot learning, the origi-
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nal authors of prototypical networks found the Euclidean distance to

improve their results (Snell et al., 2017). In the following, we study

the impact of choosing one distance or another for the two datasets

considered in our work. We report the accuracy curves for protyp-

ical networks (trained from scratch) and prototypical networks +

transfer learning when trained with different amounts of data. Fig-

ure 6.2 (left) depicts US8K results, where we observe that Euclidean-

and cosine-based models perform equivalently. However, for n ≥ 20,

cosine-based prototypical networks consistently achieve around 5%

more accuracy. Figure 6.2 (right) depicts ASC-TUT results, where

Euclidean- and cosine-based models perform similarly for n ≤ 10.

However, for n > 10, Euclidean-based models outperform cosine-

based ones for a large margin. Consequently, for our experiments, we

decide to utilize Euclidean-based prototypical networks — like the

original authors of prototypical networks (Snell et al., 2017).

6.4.2 Prototypical networks:

Overfitting or generalization?

One particularly interesting outcome of our work is that prototypi-

cal networks can generalize although they explicitly overfit the train

set. In this section, we aim to provide further evidence of this be-

havior. To this end, we plot the evolution of the train set accuracy

during training. For each dataset and prototypical networks-based

model, we depict train set accuracy curves when training with dif-

ferent amounts of data. These curves (Figure 6.3) correspond to a

single run and were randomly selected.

Although the test set results (depicted in Figure 6.1) clearly show

that prototypical networks can generalize, it is also manifest from the
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Figure 6.2: Accuracy (%) results comparing prototypical network-based
models when using Euclidean or cosine distance.

train set results (depicted in Figure 6.3) that prototypical networks

do overfit the train set. This effect is particularly notorious when

prototypical networks are trained from scratch (no transfer learning),

as these tend to quickly overfit. In addition, note that the models

trained with less data (n = 1 or n = 2) tend to overfit quicker, as

expected. This fact is particularly noticeable for prototypical net-

works + transfer learning models, since the used initialization pre-

vents them to quickly overfit. Consequently, the training curves for

n = 1 and n = 2 are more visible.

In order to further exemplify this behavior, Figure 6.4 depicts

train set and test set accuracy curves when training for US8K and

ASC-TUT with different amounts of data. Train set accuracy curves

clearly show how prototypical networks are overfitting the train set

(they achieve 100% train set accuracy). However, interestingly, test
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Figure 6.3: Train set accuracy results (%)
for prototypical networks-based models.

set accuracy results do not decrease after the model overfits the train-

ing data. Although one would expect the performance of such models

to decrease once overfitting occurs, we see that prototypical networks’

performance remains unaltered.

The here described ‘overfitting effect’ of prototypical networks is

particularly useful when only few data are available for training neu-

ral audio classifiers. As a result of such data constraints, sometimes

it can be difficult to assume that a validation set is readily available.

Consequently, it might be hard to know when to stop training. How-

ever, as seen, prototypical networks can overfit the train set and still
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Figure 6.4: Prototypical networks’ train set and test set accuracy results
(%) when trained with different amounts of data (different n’s).

deliver sounding results. For that reason, we propose to use the train

set accuracy (measured every epoch) as a proxy to monitor how dis-

criminative is the embedding space, to stop training after the model

does not improve its train set accuracy. Note, then, that a discrimi-

native embedding capable to separate all training examples is defined

by a model explicitly overfitting the train set. Which, accordingly,

would achieve 100% train set accuracy (a behavior that we repeatedly

observe in Figure 6.3 and Figure 6.4). Although the stop condition

we utilize is encouraging the model to explicitly overfit the train set,

prototypical networks can outperform the rest of the models on the

test set (see Figure 6.1). Such robustness against overfitting makes
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prototypical networks particularly convenient for use cases where no

validation data is accessible.

In our work, we decided to stop training after the train set accu-

racy did not improve for 200 epochs. It is set to 200 for consistency

with the rest of the models, since these were trained for 200 epochs

(see Section 6.3.1). However, note that for prototypical networks this

hyper-parameter is much more robust, as for any value greater than

50 results will remain equivalent (see Figure 6.4).

6.5 Summary and conclusions

Among the strategies we have studied for training neural network

classifiers with few annotated audios, we have found prototypical net-

works and transfer learning to be the ones providing the best results.

However, choosing one or another might depend on the specificities of

the use case. Transfer learning-based classifiers are generally a good

choice when operating in low-data regimes, but they assume that a

pre-trained model is readily available. Importantly, such model needs

to be trained with data falling under a similar distribution to the few

data samples we have available for solving the task. Otherwise, there

is no guarantee for transfer learning to deliver better results than,

for instance, prototypical networks. When data distributions do not

match, we show that prototypical networks trained from scratch can

be the right choice.

In order to restrict ourselves to a realistic low-data scenario, our

results are computed without utilizing any validation set. As a result,

the set of intuitions that generally help us deciding when to stop

training no longer hold. We have found early stopping to be a valid

approach when training regular deep learning classifiers. However,
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interestingly, we have found overfitting not to dramatically affect

prototypical networks’ results — possibly because these rely on a

robust distance-based classifier. Since deciding in which epoch to

‘early-stop’ highly depends on many design choices, we have found

the ‘just overfit’ criteria of prototypical networks to be very simple

while delivering competitive results.

6.6 Publications, code and contributions

Our main contributions are (i) to study how different deep learning-

based strategies perform in the low data regime, and (ii) to propose,

for the first time, the use prototypical networks to build audio clas-

sifiers. Out of this research, a conference article was published:

• Jordi Pons, Joan Serrà, and Xavier Serra (October, 2018).

“Training neural audio classifiers with few data”, in 44th IEEE

International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP2019).

– Work done in collaboration with Joan Serrà during my

internship at Telefónica Research.

– The code is accessible online.4

Finally, we also want to highlight a minor contribution that is

closely related to the research we present along that chapter. In Ap-

pendix A, we report a negative result that we obtained when explor-

ing the feasibility of learning the logarithmic compression of the mel

spectrogram. Provided that log-mel spectrogram inputs are a widely

used to build neural audio classifiers, with these experiments we were

(unsuccessfully) exploring more optimal ways to pre-process the input.
4https://github.com/jordipons/neural-classifiers-with-few-audio

169

https://github.com/jordipons/neural-classifiers-with-few-audio




Chapter 7

Conclusions

This dissertation presents a set of experiments we designed to address

the following research questions:

(i) Which deep learning architectures are most appropriate for

(music) audio signals?

(ii) In which scenarios is waveform-based end-to-end learning feasible?

(iii) How much data is required for carrying out competitive deep

learning research?

In the following lines, we provide additional discussion around

our main findings — to conclude with a general discussion that helps

understanding which are our contributions. The goal of this section

is to understand the current trends and recent findings with regard

to each of the topics above, to describe how our experiments con-

tribute to the current state-of-the-art. We structure this discussion

by following the above list of research questions.
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7.1 Which deep learning architectures are most

appropriate for (music) audio signals?

Most of our work has been centered in investigating front-ends for mu-

sic and audio tagging. Hence, in the following lines, we focus on dis-

cussing how different front-ends behave when addressing audio-based

classification and regression tasks. Within that context, we conclude

that it currently exists an open discussion regarding the use of domain

knowledge (or not) when designing deep learning models.

We structure the discussion as follows: along this section we look

at how domain knowledge can be used to design spectrogram-based

front-ends, to later (in Section 7.2) introduce how domain-knowledge

inspired architectures have impacted the end-to-end literature.

Our main reason for exploring musically motivated CNNs (see

Chapter 3) was that we found unsatisfactory to use computer vision

architectures for machine listening problems. For example, we found

particularly unsatisfactory to treat spectrograms as images — be-

cause images have a spatial meaning, while the spectrograms’ axis

stand for time and frequency. To put that in controversial terms: are

we computer vision researchers working with spectrograms?

That said, note that computer vision architectures are designed

considering the nature of their problem: several edges can be com-

bined to conform a shape, and several shapes can be combined to

build a nose or an eye, that can be further combined to draw a face.

Many computer vision CNNs are based on this principle, and that

is the reason why computer vision researchers hierarchically stack

small-squared filters (Simonyan and Zisserman, 2014; He et al., 2016;

Huang et al., 2017) — because these can capture edges in a first layer,
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which can be hierarchically combined in deeper layers to draw a face.

But modeling music and audio is about combining shapes?

Additionally, recent deep learning works on computer vision are

questioning the way domain knowledge is being used to design CNNs.

Motivated by the potential limitations of the CNN + max-pooling

front-end, the recently proposed “capsule networks” are designed to

capture the orientational and relative spatial relationships between

objects in an image (Sabour et al., 2017). In that way, they can con-

struct latent representations more robust to different view angles —

what is clearly inspired by the way the human visual system works.

Natural language processing researchers have also successfully in-

tegrated domain knowledge into their designs. For example: it is

usual to utilize as input a set of k-dimensional word vectors, each

corresponding to the i-th word in the sentence (Kim, 2014). Consid-

ering this input and with the aim to learn n-grams, it is common to

observe any of these CNN filters to span n-words. In this context, we

are not aware of any hierarchical stack of small-squared CNN filters

(computer-vision inspired) for processing this kind of text inputs.

Back when we started our research in 2015, we asked ourselves:

why computer vision and natural language researchers have their own

architectures, and the music and audio community have almost none?

Is there a research opportunity that we are missing? Is this a dead

end, and that is the reason why people are not publishing many

music- and audio-specific architectures?

Throughout our research, we found the musically motivated CNNs

to work well in practice. Not surprisingly, these models based on

domain-knowledge add constraints that strongly regularize the so-

lution space. To further understand this idea, recall that musically
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motivated CNN front-ends employ vertical and horizontal filters. We

included high-vertical and long-horizontal filters to constrain the so-

lution space so that the model is encouraged to learn timbral and

temporal representations from spectrograms. Although this strong

regularization can be beneficial in scenarios where few training data

are available, this can over-constrain the solution space in scenarios

where sizable amounts of training data are available (see Chapter 5).

Still, for most scenarios, musically motivated CNNs perform similarly

—if not better— to its counterparts while requiring less computa-

tional resources and being more interpretable (see Chapter 3 and 4).

In addition, we found that it is not only a conceptualization issue.

If not employing domain knowledge during the model design, one

can run into computational costs that are possibly not necessary (see

Chapters 4 and 5). To further develop this idea, in the following lines

we discuss an example: to learn timbral representations with CNNs.

Considering the above reasons, it makes sense that computer vi-

sion front-ends use deep stacks of small-squared CNN filters. But to

see a reasonable context considering the small-squared filters setup

(e.g., the whole image), one needs to employ a rather deep model —

with many layers, processing several feature maps. Provided that

VRAM in GPUs is limited and each feature map representation in

most computer vision CNNs takes a fairly large amount of space, it

does not seem a bad idea to try to be as memory-efficient as possible.

Now let’s consider the audio case, where a relevant cue is timbre

(expressed along the vertical axis of a spectrogram). How to capture

timbral traces using the small CNN filters front-end? Going as deep

as necessary. Remember that one can only expand a small context

per layer (with a small filter and a small max-pool), and to “see” the
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whole vertical axis of a spectrogram it is required to stack several

layers. However, a single CNN layer with vertical filters can already

capture timbral traces (expressed along a relatively large vertical re-

ceptive field) without paying the memory cost of going deep. This

happens because vertical filters already capture what is important:

vertical timbral traces, and one does not need to store the output

of several layers (large feature maps) to capture that context. But

not only that: the number of computations required by the model

utilizing vertical filters is far less than the ones performed by a com-

puter vision model, because one just runs a single-layered front-end.1

That said, it is important to remark that these single-layered CNN

front-ends with vertical filters can work as well as front-ends based on

computer vision CNNs (see Chapters 3, 4, 5, and 6). Besides, these

vertical CNN filters can be designed to be pitch-invariant — what

improves the model’s performance (see Chapters 3, 4).

Note, then, that a very simple signal observation informed a de-

sign that makes deep learning audio models more efficient (in both

time and space complexity), and this saved computing power can now

be used to build more expressive models (see Chapters 3, 4 and 5).

Interestingly, it is a fact that many audio-based deep learning

practitioners employ computer vision CNN front-ends for their music

and audio tagging works (Choi et al., 2016, 2017b). Considering the

above discussion, if more efficient and simpler audio models exist, why

people keep using computer vision CNNs? The keys to our answer

are: the flexibility of computer vision CNNs, and the momentum

coming from the computer vision community.

1More discussion on learning timbral traces with CNNs in Chapter 3.4.
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- The flexibility of computer vision CNNs:

Audio CNNs can be designed considering audio domain knowledge

or not (for more details, see Chapter 4). And, without any doubt,

spectrogram-based computer vision CNNs utilize no audio domain

knowledge for their design. What is good about that? By means of

not considering domain knowledge during the design, one minimizes

the assumptions the model does with respect to the signal or problem.

This might be beneficial, for example, if one is not certain in how to

approach the task. We have observed this behavior when designing

architectures for general audio tagging. While domain knowledge is

a valid guide to design deep learning architectures for music tagging

(see Chapter 3 and 4), we found computer vision CNNs to be very

successful for general audio tagging (see Chapter 4 and 6). We hy-

pothesize that this is caused because music has time and frequency

characteristics that can be well captured with horizontal and vertical

CNN filters — while environmental sounds are much more diverse in

the set of features required to describe those. Provided that it can be

challenging to design a specific CNN capable to encode what’s rele-

vant for general audio tagging, it seems reasonable to learn those from

data with a CNN front-end that uses no audio domain knowledge for

its design. With that in mind, note that part of the deep learning

game is to allow the architectures to freely discover features, what

leads to very successful models. If we specifically design a model

to efficiently learn timbral or temporal features, we might inquire

the risk of restricting too much the solution space — as it can be

happening for general audio tagging (see Chapter 4 and 6).

Computer vision CNNs (based on a stack of very small filters) are

designed to make minimal assumptions over the nature of the signal
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or problem — so that any structure can be learnt via hierarchically

combining small-context representations. Consequently, computer

vision CNNs are very flexible function approximators (as opposed

to be regularized models). We hypothesize that this is the reason

why people use computer vision CNNs, because (in some cases) this

flexibility can be useful. However, flexibility comes at a cost: these

models require “larger data sets and better hardware resources” (Nam

et al., 2019), and might be prone to over-fitting.

- Momentum coming from the computer vision community:

Sadly, and to put it in just a few words, the AI field tends to be

over-simplified as follows: AI → deep learning → computer vision.

One can find clear evidence of that in AI scientific venues, where most

of the empirical results are gathered via tackling computer vision

problems with deep neural networks.

Provided that the deep learning scene is clearly dominated by

computer vision researchers, it seems reasonable that many exciting

models, very clear tutorials, or software tools are developed towards

this end. Particularly, computer vision tutorials are heavily impact-

ing our field. For any deep learning audio practitioner, it looks easier

(and possibly safer) to just follow one of these computer vision tutori-

als online, rather than implementing a not so well documented audio

architecture. Due to that, many people end up having a computer

vision model that works with “audio images”. Another direct con-

sequence of this strong momentum coming from the computer vision

field is that many people consider VGGs (Simonyan and Zisserman,

2014) as the “standard CNN”, when they are just an arbitrary design

fitting the specific needs of the computer vision community.
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7.2 In which scenarios is waveform-based end-to-

end learning feasible?

Throughout this manuscript we show that audio domain knowledge

can help improving the efficiency, interpretability, and performance

of spectrogram-based models (see Chapters 3 and 4); and we also

pointed out that people use spectrogram-based computer vision CNNs

because these are flexible models (these are not constrained by do-

main knowledge). Note, then, that we have exposed the traditional

discussion of using domain knowledge (or not) when designing data-

driven models for the music and audio tagging use case.

Interestingly, waveform-based deep learning researchers are also

diving into this discussion. Some have found very promising results

when using a deep stack of very small CNN filters, but some others

have found interesting results when using domain knowledge. How-

ever, the end-to-end literature is far from being conclusive. Possibly

because these works are relatively new, only few independent meta-

studies exist comparing these architectures across several datasets. In

the following, we provide further details on which are the challenges,

current trends, and recent findings in end-to-end learning research.

It is important to remark that waveforms are high-dimensional

and variable. That is why, historically, the audio community did not

succeed in building systems that were directly approaching raw wave-

forms (Dieleman and Schrauwen, 2014; Rethage et al., 2018). Just

because waveforms are unintuitive and hard to approach, it pos-

sibly makes sense to tackle this problem without utilizing domain

knowledge. If it is hard to know how to properly approach the task,

why not learn it all from data? Accordingly, then, it could make
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sense to use models relying on a deep stack of small filters. Pro-

vided that these are not constrained by any design strategy relying

on domain knowledge, these are flexible models with sufficient ca-

pacity to learn from data. Moreover, when using a deep stack of

small filters on top of waveforms, the possibility of learning the same

representation at different phases is significantly reduced. In addi-

tion, the commonly used interleaved max-pooling layers in CNNs can

further reinforce phase invariance (Lee et al., 2018; Kim et al., 2019).

As seen, it does not seem a bad idea to use waveform-based mod-

els that employ no domain knowledge for their design. Differently to

the spectrogram case, since waveforms are high-dimensional and very

variable, the intuitions required to design waveform-based models are

not so clear as for spectrograms. As a consequence of that, researchers

have proposed waveform-based models that do not rely on audio do-

main expertise for their design. Instead, many waveform-based mod-

els rely on a set of very small filters that can be hierarchically com-

bined to learn any useful structure, like done for Wavenet (van den

Oord et al., 2016), or for the SampleCNN (Lee et al., 2018).

Although some researchers think that utilizing no domain knowl-

edge is the way to go for waveform-based models, some others think

the contrary. All waveform-based models designed considering do-

main knowledge depart from the same observation: end-to-end neural

networks learn frequency selective filters in the first layers (Dieleman

and Schrauwen, 2014; Lee et al., 2018). If these first-layer CNNs will

learn time-frequency decompositions anyway, what if one already tai-

lors the model towards learning those? Maybe, in that way, one can

achieve better results than when using a deep stack of small filters.

One first attempt towards that was to use filters that are as long
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as the window length in an STFT (e.g., with a filter length of 512

samples and a stride of 256 samples). If this setup works nicely

to decompose signals into sinusoidal basis with the STFT, maybe

it can also work to facilitate learning frequency selective filters in a

CNN (Dieleman and Schrauwen, 2014).

Later, a multiscale CNN front-end was proposed (Zhu et al.,

2016). In this work, they propose to concatenate the feature maps

resulting from CNNs having different filter sizes (e.g., filter lengths of

512, 256 and 128 with a stride of 64). They found that these different

filters naturally learn the frequencies they can most efficiently rep-

resent, with large and small filters learning low and high frequencies

respectively. This contrasts with STFT-inspired CNNs which try to

cover the entire frequency spectrum with a single filter size.

Or recently, a waveform-based front-end based on parametrized

sinc functions (that implement band-pass filters) was proposed. This

model is called SincNet and, with just two learnable parameters in

each of its first layer filters’, can outperform an STFT-inspired CNN

for waveforms (Ravanelli and Bengio, 2018).

Our contributions with respect to this subject are presented in

Chapter 4, where we show that SampleCNN-based architectures tend

to perform better than STFT-inspired ones. Although our study

clearly shows that domain knowledge seems not to help when desig-

ing waveform-based front-ends, SincNet was not yet invented when we

run this study. Consequently, our study is already outdated — and we

leave for future work to compare SincNet and SampleCNN front-ends.

Besides, in Chapter 5 we also investigate in which (data) scenarios

waveform-based end-to-end learning is feasible. There, we contrasted

a spectrogram-based model using domain knowledge (a musically mo-
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tivated CNN) with a waveform-based model that is not based on

domain knowledge: the SampleCNN by Lee et al. (2018). In our

experiments, we have found that the expressive/flexible waveform-

based SampleCNN (that is based on a deep stack of small filters) can

achieve better results when training data are abundant. However,

we have found that spectrogram-based models can achieve better re-

sults when less training data are accessible. We hypothesize that

front-ends based on domain knowledge (including both waveform-

and spectrogram-based ones) might have more chances to generalize

when training data are scarce — just because the solution space is

regularized, and the number of learnable parameters of a model can

be reduced (like with SincNet or with musically motivated CNNs).

According to our experiments and with the current end-to-end

learning models, we conclude that it is viable to develop end-to-end

learning techniques for music and audio tagging — even with rela-

tively small datasets (e.g., with the MTT dataset of ≈ 25k songs).

However, larger datasets are required for end-to-end learning models

to deliver better performance than spectrogram-based ones (see Chap-

ter 5). Interestingly, and to confirm this trend, similar results are re-

ported in different research areas like music source separation (Llúıs

et al., 2018) or lyrics to audio alignment (Stoller et al., 2019).

To conclude, spectrogram-based models tend to perform better

than waveform-based ones for publicly available datasets (see Chap-

ter 5). However, spectrogram inputs can limit the model’s learning

capabilities since potentially useful information (like the phase or high

frequencies) tend to be discarded. In order to overcome the potential

limitations associated with such pre-processing, researchers are cur-

rently exploring waveform-level front-ends, and many advances have
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been made with the recent advent of deep learning (Lee et al., 2018).

Given that we are in the early ages of end-to-end learning research,

only few independent meta-studies exist (like the ones we presented in

Chapter 4 and 5), and it is hard to tell which architectures are going

to prevail in the long run. For the moment, some influent ideas were

presented and now is time for the community to experiment with those.

7.3 How much data is required for carrying out

competitive deep learning research?

Previously, we argued that for achieving competitive results with

waveform-based models one might require large datasets. In this

section, we further discuss which might the impact of having more or

less training data when carrying out deep learning research.

In Table 7.1 we summarize the size of the publicly available datasets

we employed for our research (sorted by size). While there are rel-

atively small datasets, of less than 1000 audio tracks, most of the

datasets are of approximately 5k–10k tracks. Besides, bigger datasets

like the MagnaTagATune, the Million Song Dataset or Audioset are

also available. Hence, training data does not seem to be a bottleneck

for carrying out competitive auto-tagging deep learning research.

Although we conclude that data-quantity seems not to be an is-

sue for current deep learning research, some are concerned about the

quality of the data. For example, Choi et al. (2018a) studied the

impact of label noise in the Million Song Dataset. Or Fonseca et al.

(2017) proposed a framework for developing high-quality datasets

where, e.g., annotation errors in datasets can be easily amended.

Consequently, exploring the trade-off between data-quality and data-
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quantity in deep learning research could also provide interesting in-

sights for guiding the datasets annotation efforts.

Table 7.1: Size of the publicly available datasets we employed.

Dataset # audio tracks

AudioSet ≈2.1M
(Gemmeke et al., 2017) audio tracks
Million Song Dataset ≈240k

(Bertin-Mahieux et al., 2011) songs
MagnaTagATune ≈26k
(Law et al., 2009) songs

IRMAS ≈10k
(Bosch et al., 2012) audio tracks

Urban Sound 8k 8732
(Bosch et al., 2012) audio tracks

Acoustic scene classification 6300
(Mesaros et al., 2017) audio tracks
Extended Ballroom 4180

(Marchand and Peeters, 2016) songs
GTZAN 930

(Tzanetakis and Cook, 2002) songs
Ballroom 698

(Gouyon et al., 2004) songs
Jingu a cappella singing 64 recordings

(Black et al., 2014) (≈2 hours)

However, our data conclusions seem only to be true for audio tag-

ging — where large datasets like the Million Song Dataset or Audioset

are available. Recent literature on music source separation (Cano

et al., 2019) and on music audio transcription (Benetos et al., 2019)

have reported that the small size of the publicly available datasets is

possibly limiting the outcomes of their deep learning research.
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Although the data seems to be readily available, many research

institutions do not have the required hardware resources (storage

and computing capacity) to process it. For example, running an

experiment on the Million Song Dataset requires between 1–2 weeks

of (single) GPU processing. Provided that our GPU resources are

limited (let’s assume 2 GPUs running 24h/day), throughout a year

we can only run around 50-100 experiments. To further illustrate

this idea, let’s now consider the Audioset dataset (of ≈ 2M audios).

Besides the computing power required to process this data, one also

needs additional hardware resources to store this large dataset in a

device that can be rapidly accessible from the available GPUs.

Provided that most research institutions have few hardware re-

sources and most datasets are of approximately 5k–10k audio tracks,

most deep learning research is carried out with datasets of about

that size (Han et al., 2017a; Salamon and Bello, 2017; Fonseca et al.,

2018). Consequently, deep learning research with large audio datasets

(>25k) and with small audio datasets (<1k) is almost unexplored.

To the best of our knowledge, only three works investigated which

audio architectures perform the best with large audio datasets. One

first influential work was on speech recognition (Sainath et al., 2015),

a second one was on general audio tagging (Hershey et al., 2017),

and we carried out some research on music audio tagging (see Chap-

ter 5). However, most recent publications are from two years ago

and it would be insightful to update these studies via also bench-

marking more modern deep learning architectures — to study how

these perform when trained with large audio datasets.

On the few training data side, besides the work we present in

Chapter 6, we are not aware of many other works that explored how

184



7.3. HOW MUCH DATA IS REQUIRED FOR CARRYING OUT
COMPETITIVE DEEP LEARNING RESEARCH?

different deep learning strategies perform when trained with few au-

dio (Bocharov et al., 2017; Tilk, 2018; Morfi and Stowell, 2018b,a;

Pons et al., 2019). While deep learning models can overfit if not

trained with large datasets, investigating the possibilities of train-

ing deep neural networks with few data can enable many interesting

applications. In addition, one particularly appealing aspect of this

research direction is that the computational barrier is lower. Con-

sequently: while the potential impact of this research direction is

considerable, the computing power required to address this research

problem is accessible for many research institutions. Besides, this

research area is not yet very explored, and its potential for carrying

out innovative research is remarkable. For example, a recent work by

Choi et al. (2019) proposed to build audio classifiers with no training

audio — formulating, in that way, the zero-shot learning problem for

audio classification.
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audio source separation using deep convolutional neural networks.

In International Conference on Latent Variable Analysis and Signal

Separation, pages 258–266. Springer.

Chen, N. and Wang, S. (2017). High-level music descriptor extraction

algorithm based on combination of multi-channel cnns and lstm.

In Conference of the International Society for Music Information

Retrieval, pages 509–514.

189



BIBLIOGRAPHY

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In Confer-

ence on Empirical Methods in Natural Language Processing.

Choi, J., Lee, J., Park, J., and Nam, J. (2019). Zero-shot learning

and knowledge transfer in music classification and tagging. Ma-

chine Learning for Music Discovery Workshop at the International

Conference on Machine Learning.

Choi, K., Fazekas, G., Cho, K., and Sandler, M. (2018a). The effects

of noisy labels on deep convolutional neural networks for music

tagging. IEEE Transactions on Emerging Topics in Computational

Intelligence, 2(2):139–149.

Choi, K., Fazekas, G., and Sandler, M. (2016). Automatic tagging

using deep convolutional neural networks. In Conference of the

International Society for Music Information Retrieval.

Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2017a). Convolu-

tional recurrent neural networks for music classification. In Inter-

national Conference on Acoustics, Speech, and Signal Processing,

pages 2392–2396. IEEE.

Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2017b). Transfer

learning for music classification and regression tasks. In Conference

of the International Society for Music Information Retrieval.

Choi, K., Fazekas, G., Sandler, M., and Cho, K. (2018b). A compari-

son of audio signal preprocessing methods for deep neural networks

on music tagging. In European Signal Processing Conference, pages

1870–1874. IEEE.

190



BIBLIOGRAPHY

Choi, K., Fazekas, G., Sandler, M., and Kim, J. (2015). Auralisa-

tion of deep convolutional neural networks: Listening to learned

features. In Late-Breaking/Demo Session, Conference of the Inter-

national Society for Music Information Retrieval, pages 26–30.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and

accurate deep network learning by exponential linear units (elus).

International Conference on Learning Representations.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine

learning, 20(3):273–297.

Dannenberg, R. B., Thom, B., and Watson, D. (1997). A machine

learning approach to musical style recognition.

Davis, J. and Goadrich, M. (2006). The relationship between

precision-recall and roc curves. In International Conference on

Machine Learning. ACM.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric

representations for monosyllabic word recognition in continuously

spoken sentences. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 28(4):357–366.

Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson, X. (2017).

Fma: A dataset for music analysis. In Conference of the Interna-

tional Society for Music Information Retrieval.

Dieleman, S., Brakel, P., and Schrauwen, B. (2011). Audio-based

music classification with a pretrained convolutional network. In

Conference of the International Society for Music Information Re-

trieval, pages 669–674.

191



BIBLIOGRAPHY

Dieleman, S. and Schrauwen, B. (2014). End-to-end learning for

music audio. In International Conference on Acoustics, Speech,

and Signal Processing, pages 6964–6968. IEEE.

Dieleman, S., van den Oord, A., and Simonyan, K. (2018). The chal-

lenge of realistic music generation: modelling raw audio at scale. In

Advances in Neural Information Processing Systems, pages 7989–

7999.

Donahue, C., McAuley, J., and Puckette, M. (2019). Adversarial

audio synthesis. In International Conference on Machine Learning.

Durand, S., Bello, J. P., David, B., and Richard, G. (2016). Feature

adapted convolutional neural networks for downbeat tracking. In

International Conference on Acoustics, Speech, and Signal Process-

ing, pages 296–300. IEEE.

Eck, D. and Schmidhuber, J. (2002). Finding temporal structure

in music: Blues improvisation with lstm recurrent networks. In

Workshop on Neural Networks for Signal Processing, pages 747–

756. IEEE.

Elman, J. L. (1990). Finding structure in time. Cognitive science,

14(2):179–211.

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and

Roberts, A. (2019). Gansynth: Adversarial neural audio synthesis.

In International Conference on Learning Representations.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck,

D., and Simonyan, K. (2017). Neural audio synthesis of musical

192



BIBLIOGRAPHY

notes with wavenet autoencoders. In International Conference on

Machine Learning, pages 1068–1077.

Feigenbaum, E. A. (1981). Expert systems in the 1980s. State of

the art report on machine intelligence. Maidenhead: Pergamon-

Infotech.

Fonseca, E., Gong, R., and Serra, X. (2018). A simple fusion of deep

and shallow learning for acoustic scene classification. In Sound and

Music Computing Conference.

Fonseca, E., Plakal, M., Font, F., Ellis, D. P. W., Favory, X., Pons,

J., and Serra, X. (2019). General-purpose tagging of freesound au-

dio with audioset labels: task description, dataset, and baseline. In

Detection and Classification of Acoustic Scenes and Events Work-

shop.

Fonseca, E., Pons, J., Favory, X., Font Corbera, F., Bogdanov,

D., Ferraro, A., Oramas, S., Porter, A., and Serra, X. (2017).

Freesound datasets: a platform for the creation of open audio

datasets. In Conference of the International Society for Music In-

formation Retrieval.

Freitag, M., Amiriparian, S., Pugachevskiy, S., Cummins, N., and

Schuller, B. (2017). audeep: Unsupervised learning of representa-

tions from audio with deep recurrent neural networks. The Journal

of Machine Learning Research, 18(1):6340–6344.

Fukushima, K. and Miyake, S. (1980). Neocognitron: Self-organizing

network capable of position-invariant recognition of patterns. In In-

ternational Confonference on Pattern Recognition, volume 1, pages

459–461.

193



BIBLIOGRAPHY

Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence,

W., Moore, R. C., Plakal, M., and Ritter, M. (2017). Audio set:

An ontology and human-labeled dataset for audio events. In Inter-

national Conference on Acoustics, Speech, and Signal Processing,

pages 776–780. IEEE.

Ghoshal, A., Swietojanski, P., and Renals, S. (2013). Multilingual

training of deep neural networks. In International Conference on

Acoustics, Speech, and Signal Processing. IEEE.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of

training deep feedforward neural networks. In Conference on Ar-

tificial Intelligence and Statistics, pages 249–256.

Gong, R., Pons, J., and Serra, X. (2017). Audio to score matching

by combining phonetic and duration information. In Conference of

the International Society for Music Information Retrieval.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning.

MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,

D., Ozair, S., Courville, A., and Bengio, Y. (2014a). Generative

adversarial nets. In Advances in Neural Information Processing

Systems, pages 2672–2680.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining

and harnessing adversarial examples. arXiv preprint.

Goto, M. and Dannenberg, R. B. (2019). Music interfaces based on

automatic music signal analysis: New ways to create and listen to

music. IEEE Signal Processing Magazine, 36(1):74–81.

194



BIBLIOGRAPHY

Gouyon, F., Dixon, S., Pampalk, E., and Widmer, G. (2004). Evalu-

ating rhythmic descriptors for musical genre classification. In AES

International Conference.

Han, K., Yu, D., and Tashev, I. (2014). Speech emotion recogni-

tion using deep neural network and extreme learning machine. In

Annual Conference of the International Speech Communication As-

sociation.

Han, Y., Kim, J., Lee, K., Han, Y., Kim, J., and Lee, K. (2017a).

Deep convolutional neural networks for predominant instrument

recognition in polyphonic music. IEEE/ACM Transactions on Au-

dio, Speech and Language Processing, 25(1):208–221.

Han, Y., Park, J., and Lee, K. (2017b). Convolutional neural net-

works with binaural representations and background subtraction

for acoustic scene classification. In Detection and Classification of

Acoustic Scenes and Events Workshop, pages 1–5.

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C.,

Engel, J., Oore, S., and Eck, D. (2018). Onsets and frames: Dual-

objective piano transcription. In Conference of the International

Society for Music Information Retrieval.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into

rectifiers: Surpassing human-level performance on imagenet classi-

fication. In International Conference on Computer Vision, pages

1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning

for image recognition. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778.

195



BIBLIOGRAPHY

Hebb, D. O. (1949). The organization of behavior: A neuropsycho-

logical theory. Psychology Press.

Herrera-Boyer, P., Peeters, G., and Dubnov, S. (2003). Automatic

classification of musical instrument sounds. Journal of New Music

Research, 32(1):3–21.

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A.,

Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B.,

et al. (2017). CNN architectures for large-scale audio classifica-

tion. In International Conference on Acoustics, Speech, and Signal

Processing. IEEE.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural computation, 18(7):1527–

1554.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Neural computation, 9(8):1735–1780.

Holzmann, G. (2009). Reservoir computing: A powerful black-box

framework for nonlinear audio processing. In International Con-

ference on Digital Audio Effects.

Hopfield, J. J. (1982). Neural networks and physical systems with

emergent collective computational abilities. National Academy of

Sciences, 79(8):2554–2558.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne,

C., Shazeer, N., Dai, A. M., Hoffman, M. D., Dinculescu, M., and

Eck, D. (2019). Music transformer. In International Conference

on Learning Representations.

196



BIBLIOGRAPHY

Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L.

(2017). Densely connected convolutional networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition, volume 1,

page 3.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning

machine: theory and applications. Neurocomputing, 70(1-3):489–

501.

Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-

language knowledge transfer using multilingual deep neural net-

work with shared hidden layers. In International Conference on

Acoustics, Speech, and Signal Processing. IEEE.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P.

(2015). Joint optimization of masks and deep recurrent neural net-

works for monaural source separation. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 23(12):2136–2147.

Humphrey, E. J. and Bello, J. P. (2012). Rethinking automatic

chord recognition with convolutional neural networks. In Interna-

tional Conference on Machine Learning and Applications-Volume

02, pages 357–362. IEEE Computer Society.

Humphrey, E. J., Bello, J. P., and LeCun, Y. (2013). Feature learn-

ing and deep architectures: New directions for music informatics.

Journal of Intelligent Information Systems, 41(3):461–481.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv

preprint.

197



BIBLIOGRAPHY

Jaeger, H. (2001). The echo state approach to analysing and train-

ing recurrent neural networks-with an erratum note. German Na-

tional Research Center for Information Technology, Technical Re-

port, 148(34):13.

Jansen, A., Plakal, M., Pandya, R., Ellis, D. P., Hershey, S., Liu, J.,

Moore, R. C., and Saurous, R. A. (2017). Unsupervised learning

of semantic audio representations. arXiv preprint.

Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A.,

and Weyde, T. (2017). Singing voice separation with deep u-net

convolutional networks. In Conference of the International Society

for Music Information Retrieval.

Jeong, Y., Choi, K., and Jeong, H. (2017). Dlr: Toward a deep

learned rhythmic representation for music content analysis. arXiv

preprint.

Kaminsky, I. and Materka, A. (1995). Automatic source identifica-

tion of monophonic musical instrument sounds. In International

Conference on Neural Networks, volume 1, pages 189–194. IEEE.

Kaya, H. and Salah, A. A. (2016). Combining modality-specific ex-

treme learning machines for emotion recognition in the wild. Jour-

nal on Multimodal User Interfaces, 10(2):139–149.

Kereliuk, C., Sturm, B. L., and Larsen, J. (2015). Deep learning and

music adversaries. IEEE Transactions on Multimedia, 17(11):2059–

2071.

Khoo, S., Man, Z., and Cao, Z. (2012). Automatic han chinese

folk song classification using extreme learning machines. In Aus-

198



BIBLIOGRAPHY

tralasian Joint Conference on Artificial Intelligence, pages 49–60.

Springer.

Kim, J., Urbano, J., Liem, C. C., and Hanjalic, A. (2018). One deep

music representation to rule them all? a comparative analysis of

different representation learning strategies. Neural Computing and

Applications, pages 1–27.

Kim, T., Lee, J., and Nam, J. (2019). Comparison and analysis of

samplecnn architectures for audio classification. IEEE Journal of

Selected Topics in Signal Processing.

Kim, Y. (2014). Convolutional neural networks for sentence classifi-

cation. arXiv preprint.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational

bayes. arXiv preprint.

Kohonen, T. (1988). The ’neural’ phonetic typewriter. Computer,

21(3):11–22.

Kostek, B. and Krolikowski, R. (2014). Application of artificial neu-

ral networks to the recognition of musical sounds. Archives of

Acoustics, 22(1):27–50.
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Schlüter, J. and Grill, T. (2015). Exploring data augmentation for

improved singing voice detection with neural networks. In Confer-

208



BIBLIOGRAPHY

ence of the International Society for Music Information Retrieval,

pages 121–126.

Schmidt, W. F., Kraaijveld, M. A., and Duin, R. P. (1992). Feed-

forward neural networks with random weights. In International

Conference on Pattern Recognition, pages 1–4. IEEE.

Schreiber, H. and Müller, M. (2018). A single-step approach to mu-

sical tempo estimation using a convolutional neural network. In

Conference of the International Society for Music Information Re-

trieval.

Schreiber, H. and Müller, M. (2019). Musical tempo and key esti-

mation using convolutional neural networks with directional filters.

arXiv preprint.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing, 45(11):2673–

2681.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint.

Slaney, M., Weinberger, K., and White, W. (2008). Learning a metric

for music similarity. In Conference of the International Society for

Music Information Retrieval.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks

for few-shot learning. In Advances in Neural Information Process-

ing Systems.

209



BIBLIOGRAPHY

Soltau, H., Schultz, T., Westphal, M., and Waibel, A. (1998). Recog-

nition of music types. In International Conference on Acoustics,

Speech, and Signal Processing, volume 2, pages 1137–1140. IEEE.

Sordo, M., Laurier, C., and Celma, O. (2007). Annotating music

collections: How content-based similarity helps to propagate labels.

In Conference of the International Society for Music Information

Retrieval.

Southall, C., Stables, R., and Hockman, J. (2017). Automatic drum

transcription for polyphonic recordings using soft attention mech-

anisms and convolutional neural networks. In Conference of the

International Society for Music Information Retrieval, pages 606–

612.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. (2014). Dropout: a simple way to prevent neu-

ral networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958.

Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale

for the measurement of the psychological magnitude pitch. The

Journal of the Acoustical Society of America, 8(3):185–190.

Stoller, D., Durand, S., and Ewert, S. (2019). End-to-end lyrics align-

ment for polyphonic music using an audio-to-character recognition

model. In International Conference on Acoustics, Speech, and Sig-

nal Processing. IEEE.

Stoller, D., Ewert, S., and Dixon, S. (2018). Wave-u-net: A multi-

scale neural network for end-to-end audio source separation. In

210



BIBLIOGRAPHY

Conference of the International Society for Music Information Re-

trieval.
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Appendix A

Negative result: learning

the logarithmic compression

of the mel spectrogram

Currently, successful neural audio classifiers use log-mel spectrograms

as input (Hershey et al., 2017; Salamon and Bello, 2017; Dieleman

and Schrauwen, 2014). Given a mel-spectrogram matrix X, the log-

arithmic compression is computed as follows: f(x) = log(α ·X + β).

Common pairs of (α, β) are (1, ε) or (10000, 1) (Salamon and Bello,

2017; Dieleman and Schrauwen, 2014). In this section, we explore the

possibility of learning (α, β). To this end, we investigate two log-mel

spectrogram variants:

• Log-learn: The logarithmic compression of the mel spectro-

gram X is optimized via SGD together with the rest of the pa-

rameters of the model. We use exponential and softplus gates

to control the pace of α and β, respectively. We set the initial
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pre-gate values to 7 and 1, what results in out-of-gate α and β

initial values of 1096.63 and 1.31, respectively.

• Log-EPS: We set as baseline a log-mel spectrogram which does

not learn the logarithmic compression. (α, β) are set to (1, ε),

as done by Salamon and Bello (2017) for their SB-CNN model

(see Section 6.2.2 to know more about SB-CNN).

Tables A.1 and A.3 compare the results obtained by several mod-

els (see Chapter 6.3 for the details about these models) when varying

the mel spectrogram compression: log-learn vs. log-EPS. We run

this study for two different datasets: US8K and ASC-TUT (in Chap-

ter 6.2 we provide details on the nature of these datasets). To clearly

illustrate which are the performance gains obtained by log-learn, Ta-

bles A.2 and A.4 list the accuracy differences between log-learn and

log-EPS variants. Tables A.1 and A.2 reveal that log-lean and log-

EPS results are almost identical for US8K. Although it seems that

log-learn can help improving the results for SB-CNN and TIMBRE

architectures, for prototypical networks and VGG one can achieve

worse results. For this reason, we conclude that log-learn and log-

EPS results are almost equivalent for US8K. However, for ASC-TUT

dataset, log-learn results are much worse than log-EPS ones. Ta-

bles A.3 and A.4 show that log-learn only improves the results of

SB-CNN models when trained with little data (1 ≤ n ≤ 10), but

for the rest of the models the performance decreases substantially.

Accordingly, we decide not to learn the logarithmic compression of

the mel spectrogram throughout the study we present in Chapter 6.
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Table A.1: US8K dataset: accuracy results comparing log-EPS (stan-
dard log-mel spectrogram) & log-learn (learned log-mel spectrogram).

Prototypical Prototypical SB-CNN SB-CNN
n Net (log-learn) Net (log-EPS) (log-learn) (log-EPS) )

1 19.16% 21.69% 19.84% 18.29%
2 25.85% 30.02% 24.77% 22.81%
5 35.85% 43.58% 32.85% 29.89%
10 44.90% 51.14% 39.75% 36.66%
20 51.15% 58.86% 45.03% 42.34%
50 60.39% 62.14% 54.94% 53.19%
100 65.38% 63.08% 60.34% 60.43%

VGG VGG TIMBRE TIMBRE
n (log-learn) (log-EPS) (log-learn) (log-EPS)

1 18.27% 16.58% 21.27% 18.97%
2 21.53% 22.03% 25.95% 24.95%
5 26.48% 27.93% 34.02% 34.20%
10 30.89% 32.40% 39.20% 40.12%
20 32.04% 35.49% 42.38% 37.70%
50 55.22% 58.62% 48.40% 46.11%
100 64.65% 67.41% 50.14% 49.57%

Table A.2: US8K dataset: log-learn accuracy gains
when compared to log-EPS.

Prototypical
n Networks SB-CNN VGG TIMBRE

1 -2.53% 1.55% 1.69% 2.30%
2 -4.17% 1.96% -0.50% 1.00%
5 -7.73% 2.96% -1.45% -0.18%
10 -6.24% 3.09% -1.51% -0.92%
20 -7.71% 2.69% -3.45% 4.68%
50 -1.75% 1.75% -3.40% 2.29%
100 2.30% -0.09% -2.76% 0.57%
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Table A.3: ASC-TUT dataset: accuracies comparing log-EPS (standard
log-mel spectrogram) & log-learn (learned log-mel spectrogram).

Prototypical Prototypical SB-CNN SB-CNN
n Net (log-learn) Net (log-EPS) (log-learn) (log-EPS)

1 19.94% 18.16% 18.69% 13.70%
2 24.72% 24.68% 21.34% 18.08%
5 31.77% 35.36% 26.62% 21.24%
10 39.64% 45.39% 30.22% 27.81%
20 43.28% 53.78% 34.87% 36.61%
50 45.43% 62.03% 45.27% 52.32%
100 47.70% 67.78% 52.59% 58.56%

VGG VGG TIMBRE TIMBRE
n (log-learn) (log-EPS) (log-learn) (log-EPS)

1 11.07% 17.01% 16.06% 17.00%
2 11.54% 20.05% 19.72% 20.21%
5 12.47% 20.36% 21.88% 25.40%
10 13.71% 29.45% 24.17% 27.74%
20 22.51% 44.58% 25.09% 39.02%
50 37.14% 52.46% 31.66% 46.61%
100 42.53% 57.71% 38.35% 50.16%

Table A.4: ASC-TUT dataset: log-learn accuracy gains
when compared to log-EPS.

Prototypical
n Networks SB-CNN VGG TIMBRE

1 1.78 4.99 -5.94 -0.94
2 0.04 3.26 -8.51 -0.49
5 -3.59 5.38 -7.89 -3.52
10 -5.70 2.41 -15.74 -13.93
20 -10.50 -1.74 -22.07 -13.93
50 -16.60 -7.05 -15.32 -14.95
100 -20.08 -5.97 -15.18 -11.81
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