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Training neural audio classifiers with few data

● Strong regularization
– Will show the limitations of the standard deep learning pipeline

● Prototypical networks
– A distance-based classifier that operates over a learn latent space

● Transfer learning
– Enables to leverage external sources of audio data 

HOW?



  

Methodology



  

Targeted tasks and our data

● Acoustic Event Recognition (US8K dataset)
– 8,732 urban sounds 
– 10 classes: car horn, children playing, dog bark, gun shot, siren, ...
– 10 folds

● Acoustic Scene Classification (ASC-TUT dataset)
– 4,680 training audio segments
– 1,620 evaluation audio segments
– 15 classes: park, home, office, train, bus, ... 



  

Evaluation 
The MFCC’s + nearest neighbor baseline case



  

We restrict ourselves to a 
realistic low-data scenario:

NO VALIDATION SET!

Evaluation 
The MFCC’s + nearest neighbor baseline case
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Regularized models

Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)     

● SB-CNN: 250k parameters
– Inspired by AlexNet’s computer vision architecture
– 3 CNN layers (5x5) with max-pool + dense layer + softmax

● VGG: 50k parameters
– yet another computer vision architecture
– 5 CNN layers (3x3) with max-pool (2x2) + softmax

● TIMBRE: 10k parameters
– The smallest CNN one can imagine for learning timbral traces
– 1 CNN layer (vertical filters 108x7) with maxpool + softmax
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Remember:
NO VALIDATION SET!

We only train for 200 epochs!
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Prototypical networks

0. Compute a prototype per class (k):

1. Learning f  ( · ): to separate classes 
in the embedding space of size 10.

2. Classification: distribution based 
on a softmax over distances to the 
prototypes in the embedding space.

In our experiments: 
a VGG parametrizes f  ( · ) 



  



  



  

Remember:
NO VALIDATION SET!

When to stop training?



  

The “just overfit” criteria for prototypical networks

Prototypical 
networks do 
generalize 
although

they overfit

Stop training: 
after train-set 

accuracy does 
not improve
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Transfer learning

AudioSet dataset
(acoustic event recognition)

2M Youtube audios

US8K dataset
(acoustic event recognition)

ASC-TUT dataset
(acoustic scene classification)

pretrain with
source task

finetune with
target task(s)

Finetuning of classifier:
dense softmax layerPre-trained VGGish on AudioSet:

6 CNN layers (3×3)
with max-pool layers (2×2) +  

3 dense layers (4096, 4096, 128) Finetuning of prototypical 
network’s embedding
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Conclusions



  

Training neural audio classifiers with few data

● Strong regularization
– To realize the limitations of the standard deep learning pipeline

● Prototypical networks
– A distance-based classifier that operates over a learn latent space
– Particularly useful when:

● No validation set is available
● No additional “similar” data is accessible

● Transfer learning
– Enables to leverage external sources of audio data 

Remember:
NO VALIDATION SET!
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Code is available!
https://github.com/jordipons/neural-classifiers-with-few-audio

+ info in our paper:
https://arxiv.org/abs/1810.10274

https://github.com/jordipons/neural-classifiers-with-few-audio
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