Jordi Pons

jordipons.me – @jordiponsdotme

Internship at Telefónica Research Summer 2018

Supervised by Joan Serrà

HOW?

Strong regularization

Will show the limitations of the standard deep learning pipeline

Prototypical networks

A distance-based classifier that operates over a learn latent space

Transfer learning

Enables to leverage external sources of audio data

Methodology

Targeted tasks and our data

- Acoustic Event Recognition (US8K dataset)
 - 8,732 urban sounds
 - 10 classes: car horn, children playing, dog bark, gun shot, siren, ...
 - 10 folds

- Acoustic Scene Classification (ASC-TUT dataset)
 - 4,680 training audio segments
 - 1,620 evaluation audio segments
 - **15 classes**: park, home, office, train, bus, ...

Evaluation

The MFCC's + nearest neighbor baseline case

EvaluationThe MFCC's + nearest neighbor baseline case

Regularized models Prototypical networks Transfer learning

Prototypical networks Transfer learning

Regularized models

Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)

- SB-CNN: 250k parameters
 - Inspired by AlexNet's computer vision architecture
 - 3 CNN layers (5x5) with max-pool + dense layer + softmax
- VGG: 50k parameters
 - yet another computer vision architecture
 - 5 CNN layers (3x3) with max-pool (2x2) + softmax
- TIMBRE: 10k parameters
 - The smallest CNN one can imagine for learning timbral traces
 - 1 CNN layer (vertical filters 108x7) with maxpool + softmax

Input: log-mel spectrogram of 128 bins x 3 sec (128 frames)

- SB-CNN: 250k parameters
 - Inspired by AlexNet's computer vision architecture
 - 3 CNN layers (5x5
- VGG: 50k paramet
 - yet another compu
 - 5 CNN layers (3x3

Remember:

NO VALIDATION SET!

We only train for 200 epochs!

- TIMBRE: 10k parameters
 - The smallest CNN one can imagine for learning timbral traces
 - 1 CNN layer (vertical filters 108x7) with maxpool + softmax

- ---- Random guess
- -- ×-- Nearest-neigbor MFCCs

Transfer learning

Prototypical networks

Prototypical networks

In our experiments: a VGG parametrizes $f_{\phi}(\cdot)$

0. Compute a prototype per class (*k*):

$$c_k = \mu_k = \frac{1}{|S_k|} \sum_{x_i \in S_k} f_{\phi}(x_i)$$

1. Learning $f_{\phi}(\cdot)$: to separate classes in the embedding space of size 10.

2. Classification: distribution based on a softmax over distances to the prototypes in the embedding space.

The "just overfit" criteria for prototypical networks

Prototypical networks

Transfer learning

Transfer learning

Transfer learning

pretrain with source task

finetune with target task(s)

AudioSet dataset

(acoustic event recognition)

2M Youtube audios

Pre-trained **VGGish** on AudioSet: 6 CNN layers (3×3) with max-pool layers (2×2) + 3 dense layers (4096, 4096, 128) **US8K** dataset

(acoustic event recognition)

ASC-TUT dataset

(acoustic scene classification)

Finetuning of classifier:

dense softmax layer

Finetuning of prototypical network's **embedding**

Transfer learning

pretrain with source task

finetune with target task(s)

AudioSet data (acoustic event rec 2M Youtube au

Remember: NO VALIDATION SET!

US8K dataset tic event recognition)

SC-TUT dataset c scene classification)

Pre-trained **VGGish** on AudioSet: 6 CNN layers (3×3) with max-pool layers (2×2) + 3 dense layers (4096, 4096, 128) Finetuning of classifier: dense softmax layer

Finetuning of prototypical network's **embedding**

Conclusions

Strong regularization

To realize the limitations of the standard deep learning pipeline

Prototypical networks

- A distance-based classifier that operates over a learn latent space
- Particularly useful when:
 - No validation set is available
 - No additional "similar" data is accessible

Transfer learning

Enables to leverage external sources of audio data

Remember: **NO VALIDATION SET!**

Jordi Pons

jordipons.me – @jordiponsdotme

Code is available!

https://github.com/jordipons/neural-classifiers-with-few-audio

+ info in our paper:

https://arxiv.org/abs/1810.10274