

Upsampling artifacts in neural audio synthesis

Jordi Pons (@jordiponsdotme – www.jordipons.me) work with Santiago Pasqual, Giulio Cengarle and Joan Serrà arxiv.org/abs/1703.09452

Transposed convolutions

- Widely used

Convolutions ("collapse")

Transposed convolutions ("expand")

Transposed convolutions

- Widely used

Interpolation + convolution

- Often-times used

Transposed convolutions

- Widely used

Interpolation + convolution

- Often-times used

ORIGINAL SIGNAL UPSAMPLE & 3 CONVOLUTION STRETCH INTERPOLATION NEMPERT NEIGHBOR & CONJULUTION INTERPOLATION + CONVOLUTION

Transposed convolutions

- Widely used

Interpolation + convolution

- Often-times used

Subpixel convolutions

- Rarely used

Upsampling artifacts:

Transposed convolutions

Tonal artifacts

Tonal artifacts

Interpolation + convolution

Subpixel convolutions

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

Transposed convolutions

Transposed convolutions: tonal artifacts

Main sources of tonal artifacts:

- Weights initialization
- Overlap issues

Examples for discussion:

- No-overlap: stride = length.
- Partial-overlap: length is *not* a multiple of stride.
 - Example: filter length = 5, and stride = 4.
- Full-overlap: length is a multiple of stride.
 - Example: filter length = 8, and stride = 4.

Odena et al., 2016: "Deconvolution and Checkerboard Artifacts" in Distill.

Transposed convolutions: partial-overlap case

Example: length=3, stride=2

Note the periodicities due to **overlap issues**

Transposed convolutions: full-overlap case

Example: length=3, stride=1

NO periodicities due to constant overlap

Transposed convolutions: no-overlap case

Example: length=3, stride=3.

NO periodicities due to overlap Note the **weights initialization** issue

Transposed convolutions

Main sources of tonal artifacts:

- Weights initialization
- Overlap issues

Transposed convolution categories:

- No-overlap: stride = length.
- Partial-overlap: length is *not* a multiple of stride.
- Full-overlap: length is a multiple of stride.

Important remark:

Even though you solve the overlap issue, the weights initialization issue remains due to random initialization!

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

Interpolation + convolution

Interpolation + convolution: filtering artifacts

Interpolation: stretch + (non-learnable) convolution

TABLE 3.1 Short Table of Fourier Transforms

_	g(t)	G(f)	
	$e^{-at}u(t)$	$a+j2\pi f$	a > 0
2	$e^{at}u(-t)$		a > 0
3	$e^{-a t }$	$\frac{a - j2\pi f}{2a}$ $\frac{a^2 + (2\pi f)^2}{a^2 + (2\pi f)^2}$	
4	$te^{-at}u(t)$	$\frac{1}{(a+j2\pi f)^2}$	a > 0
5	$t^n e^{-at}u(t)$	$\frac{n!}{(a+j2\pi f)^{n+1}}$	
6	$\delta(t)$	(a+j2ij)	
7	1	$\delta(f)$	
8	$e^{j2\pi f_0t}$	$\delta(f-f_0)$	
9	$\cos 2\pi f_0 t$	$0.5[\delta(f+f_0)+\delta(f-f_0)]$	
10	$\sin 2\pi f_0 t$	$j0.5[\delta(f+f_0)-\delta(f-f_0)]$	
11	u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
12	sgn t	2	
	$\cos 2\pi f_0 t u(t)$	$\frac{j2\pi f}{\frac{1}{4}[\delta(f-f_0)+\delta(f+f_0)]} + \frac{j2\pi f}{(2\pi f_0)^2 - (2\pi f)^2}$ $\frac{1}{4}[\delta(f-f_0)-\delta(f+f_0)] + \frac{2\pi f_0}{(2\pi f_0)^2 - (2\pi f)^2}$	
14	$\sin 2\pi f_0 t u(t)$	$\frac{1}{4j}[\delta(f-f_0)-\delta(f+f_0)]+\frac{2\pi f_0}{(2\pi f_0)^2-(2\pi f)^2}$	
15	$e^{-at}\sin 2\pi f_0 t u(t)$	$\frac{2\pi f_0}{(a+j2\pi f)^2+4\pi^2 f_0^2}$	
16	$e^{-at}\cos 2\pi f_0 t u(t)$	$\frac{a+j2\pi f}{(a+j2\pi f)^2 + 4\pi^2 f_0^2}$	
	$\Pi\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}(\pi f \tau)$	
18	$2B\operatorname{sinc}(2\pi Bt)$	$\Pi\left(\frac{f}{2B}\right)$	
19	$\Delta\left(\frac{t}{t}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\pi f \tau}{2} \right)$	
20	$B\operatorname{sinc}^2(\pi Bt)$	$\Delta \left(\frac{f}{2B}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0)$	
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-2(\sigma\pi f)^2}$	

Upsample white noise at 4kHz by 4

Nearest Neighbor

Linear interpolation

Interpolation + convolution: filtering artifacts

Important remark:

Filtering artifacts emerge because the <u>frequency response of each interpolation</u> <u>colors the signal</u>.

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

Subpixel convolution

Subpixel convolution: tonal artifacts

Convolution

("channel upsampling")

Reshape

("periodic shuffle")

out_channels
$$\cdot$$
 up factor = $2 \cdot 2 = 4$
length = 6

out_channels = 2
length
$$\cdot$$
 factor = $6 \cdot 2 = 12$

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

Artifacts due to spectral replicas

Signal processing review

IDEA 1:

Spectral replicas emerge when sampling/discretizing a signal!

IDEA 2:

When upsampling, one performs bandwith extension - be aware of spectral replicas!

Frequency domain

Frequency domain

x₍(+)

Frequency domain

IDEA 1:Spectral replicas emerge when sampling/discretizing a signal!

Frequency domain

IDEA 1:Spectral replicas emerge when sampling/discretizing a signal!

-ZF3 -F3 -F3 0 F3 F5 ZF3 F

Stretch interpolation x2 (upsampling with zeros)

0

X₍(+)

Frequency domain

IDEA 1:Spectral replicas emerge when sampling/discretizing a signal!

Stretch interpolation x2 (upsampling with zeros)

X,(+)

Frequency domain

IDEA 1:

Spectral replicas emerge when sampling/discretizing a signal!

IDEA 2:

When upsampling, one performs bandwith extension - be aware of spectral replicas!

Stretch interpolation x2 (upsampling with zeros)

Signal processing review

IDEA 1:

Spectral replicas emerge when sampling/discretizing a signal!

IDEA 2:

When upsampling, one performs bandwith extension - be aware of spectral replicas!

Spectral replicas of tonal artifacts: multilayered case

Spectral replicas of tonal artifacts: multilayered case

√cos 2πf_o t` **Time Domain**

 $\frac{1}{2} \left[\delta (f - f_0) + \delta (f + f_0) \right]$ Frequency Domain

1/2

Spectral replicas of <u>signal offsets</u>

Spectral replicas of <u>signal offsets</u>

Spectral replicas of signal offsets

Artifacts due to spectral replicas

Additional sources of upsampling artifacts:

- Spectral replicas of tonal artifacts
- Spectral replicas of filtering artifacts
- Spectral replicas of signal offsets

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

The role of training

Is training dealing with the problematic initializations?

Music source separation (MUSDB [28] benchmark)	SDR ↑	epoch	#parm
Demucs-like: transposed CNN (full-overlap)	5.35	319 s	703M
Demucs-like: nearest neighbor interpolation	5.17	423 s	716M
Demucs-like: linear interpolation	4.62	430 s	716M
Demucs-like: subpixel CNN	5.38	311 s	729M

The role of training: helps overcoming the noisy initializations to get state-of-the-art results

Formal evaluation:

- Transposed and subpixel CNNs achieve the best SDR scores.
 - Despite their poor initialization!
- Nearest neighbour upsampler follows closely!

Informal listening:

- Upsampling artifacts can emerge even after training!
 - Tonal artifacts: silent parts and with out-of-distribution data.
 - Filtering artifacts: they are not that perceptually annoying.

Agenda:

Transposed convolutions

- Why do they introduce tonal artifacts?

Interpolation + convolution

- Why do they introduce filtering artifacts?

Subpixel convolutions

- Why do they introduce tonal artifacts?

Artifacts due to spectral replicas

- Signal processing perspective

The role of training

- Learning from data reduces artifacts

Dolby

arxiv.org/pdf/2010.14356.pdf

@jordiponsdotme - www.jordipons.me