Adapting Wavenet for Speech Enhancement

 DARIO RETHAGE | JULY 12, 2017
I am

- Master Student
* 6 months @ Music Technology Group, Universitat Pompeu Fabra
* Deep learning for acoustic source separation
* With Jordi Pons, Audio Signal Processing Lab

Learning from raw audio

* High dimensionality
* Many levels of structure
* No hand crafted feature extraction
* No discarding of information (phase)
* Until recently computationally intractable

Wavenet: A Generative Model for Raw Audio

* Speech synthesis on waveform level using auto-regressive, generative model
* Generates 8-bit (256 values) probability distribution
* Sample output distribution (probabilistic task)
* Considerable parameter savings
- Small filters
- Large dilations
* 16kHz sampling rate (wide-band)
- Very slow

* Not strictly end-to-end

Wavenet: Key Features

\author{

- Causality
 * Gated Units
 * Softmax Output
 * μ-law Quantization
 * Dilation
 - Stacks
}

Causality

* Only previous and current sample inform prediction of sample $t+1$
* Asymmetric padding
* 2x1 filters

Next Sample

Previous Samples

Gated Units

* Control contribution of each layer

Softmax

μ-law quantization

* No assumptions about output distribution
* Well suited for multi-modal distributions
* Requires discretization of output
* Non-linear companding
* Better use of 8-bit quantization space

Dilation

* Larger receptive field, same parameters
* By powers of 2

Stacks

* Repeat dilation pattern
* More depth, less width

Wavenet: Reimplementation

* Many open questions
- Filter Depths
- Number of Layers
* Trained on VCTK, 109 native speakers of English, good phonetic coverage
* Proof of concept
* ~600k parameters

Speech Enhancement

* Within acoustic source separation
* Deterministic
* Goal: Improve intelligibility and/or overall perceptual quality of speech signal
* Until recently, greatest successes in the frequency domain e.g. estimating spectral mask

$$
m_{t}=s_{t}+b_{t} \quad \begin{aligned}
& m: \text { mixture } \\
& s: \text { speech } \\
& b: \text { background }
\end{aligned}
$$

Either estimate $\hat{\boldsymbol{s}}$ given \boldsymbol{m} directly or $\widehat{\boldsymbol{b}}$ given \boldsymbol{m}, since $\boldsymbol{s}=\boldsymbol{m}-\boldsymbol{b}$

A Wavenet For Source Separation

* Generic architecture, suitable for any acoustic source separation
* Blind two-source separation
* Discriminative
* End-to-end
- Time-domain input/output
- No pre/post-filtering
- No quantization
* 16kHz sampling rate (wide-band)
* Flexible

Key Contributions

* Non-causality
* Real-valued predictions
* Non-autoregressive
* Target fields
* Enforces time continuity
* Energy-conserving loss

Noisy Speech Fragment

Non-causality

* Equal context in the past and future
* Symmetric padding
* 3x1 filters

Output

Dilation: 8

Dilation: 4

Dilation: 2

Dilation: 1

Real-valued Predictions

* Assumes Gaussian output distribution
* No quantization error

One output unit per output sample

Wavenet
*-law companding disadvantageous

Proposed Model

Target Fields

Target Fields

* Autoregression requires sequential, sample by sample, inference \rightarrow slow
* Parallel prediction of target field benefits inference AND training

Enforcing Time Continuity

* Without auroregression, original Wavenet produces point discontinuities
* Very unpleasant sound
*x1 filters in final (non-dilated) layers allow time continuity to be reflected in the loss

Point discontinuity

3×1 filters

Energy-Conserving Loss

$$
\mathcal{L}\left(\hat{s}_{t}\right)=\left|s_{t}-\hat{s}_{t}\right|+\left|b_{t}-\hat{b}_{t}\right|
$$

Goal: $E_{m_{t}} \equiv E_{\widehat{m}_{t}}$

* Inspired by dissimilarity losses
*mpirically, reduces algorithmic artifacts

Flexibility in Temporal Dimension

* Same model can be deployed on reduced computational resources
* Audio input of arbitrary length \rightarrow one-shot denoising
* Reduces redundant computations
* 25s of audio in single forward pass (Titan X Pascal)
~0.56s per 1 second of noisy audio
* Fully convolutional

Experiments

Setup
* 33 Layers
- Dilations: 1, 2, ..., 256, 512
- Stacks: 3
* 384ms Receptive Field
*.3m parameters

Data

* VCTK for voice
* DEMAND for environmental sounds

Unseen speakers in unseen noise conditions
Training SNR: 0dB - 18dB
Test SNR: $2.5 \mathrm{~dB}-17.5 \mathrm{~dB}$

Evaluation Metrics

* Should be perceptually meaningful
* MOS = mean opinion score (predicted) in range [1,5]
*Weighted combination of objective speech quality measures
* SIG: MOS rating of the signal distortion attending only to the speech signal
* BAK: MOS rating of the intrusiveness of background noise

OVL: MOS rating of the overall effect

Results

Model	SIG	BAK	OVL	Model	SIG	BAK	OVL
Noise-only data augmentation				Target field length			
20\%	2.74	2.98	2.30	1 sample*	1.37	1.79	1.28
10\%	2.95	3.12	2.49	101 samples*	1.67	2.07	1.50
0%	3.62	3.23	2.98	1601 samples	3.62	3.23	2.98
Loss				Conditioning			
L1	3.54	3.22	2.93	Unconditioned	3.48	3.12	2.88
Energy-Conserving	3.62	3.23	2.98	Conditioned	3.62	3.23	2.98
Wiener filtering	3.52	2.93	2.90	Noisy signal	3.51	2.66	2.79

*Computed on perceptual test set due to computational (time) constraints.

Best Configuration

* Energy-conserving loss
* 10\% noise-only augmentation
- 100ms target field

Conditioning

Speech

Speech

Speech

Background

Background

Background

Wiener

Wiener

Wiener
7.5 dB
12.5 dB
2.5 dB

Perceptual Evaluation

"give an overall quality score, taking into consideration both: speech quality and background-noise suppression"

* 33 participants
* 20 samples, 5 at each SNR
* 1-5 quality rating

Wiener Filtering	Proposed Model
2.92	3.60

Take away

* A discriminative adaptation of Wavenet for speech enhancement
* Reduction in time complexity, without sacrificing expressive capability
* Noise-only augmentation necessary for generating silence
* No speech-specific constraints
* Energy-conservation
* Perceptual trials: Preferred over Wiener Filtering
* Possible to learn multi-scale hierarchical representations from raw audio
* Audio samples online, source on GitHub

Future Work

* Continue exploring the idea of energy-conserving losses in neural audio processing models
* Better handling of short-time high energy events, e.g. honk in city traffic
* Apply to other audio domains
- Music, multi-track separation

Thank you

