Adapting Wavenet for Speech Enhancement

DARIO RETHAGE | JULY 12, 2017

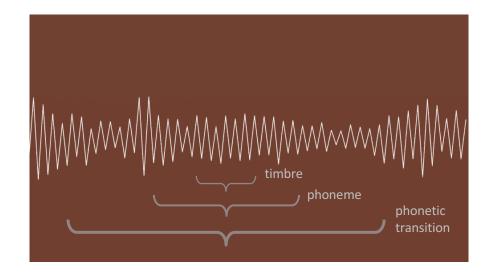
l am

- Master Student
- 6 months @ Music Technology Group, Universitat Pompeu Fabra
- Deep learning for acoustic source separation
- ❖ With Jordi Pons, Audio Signal Processing Lab

MTG Music Technology Group

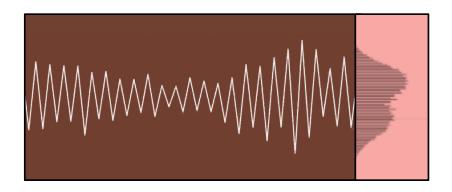
Learning from raw audio

- High dimensionality
- Many levels of structure
- No hand crafted feature extraction
- No discarding of information (phase)
- Until recently computationally intractable



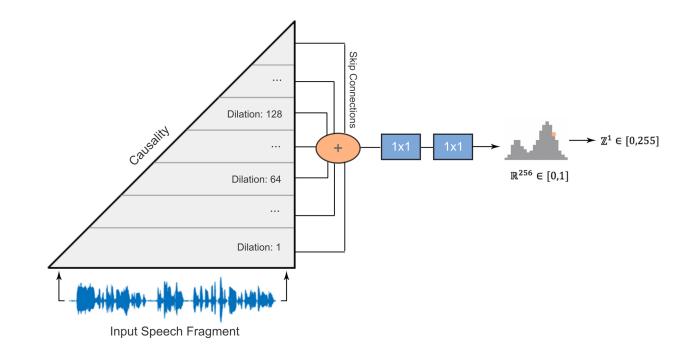
Wavenet: A Generative Model for Raw Audio

- Speech synthesis on waveform level using auto-regressive, generative model
- Generates 8-bit (256 values) probability distribution
- Sample output distribution (probabilistic task)
- Considerable parameter savings
 - Small filters
 - Large dilations
- ❖ 16kHz sampling rate (wide-band)
- Very slow
- Not strictly end-to-end



Wavenet: Key Features

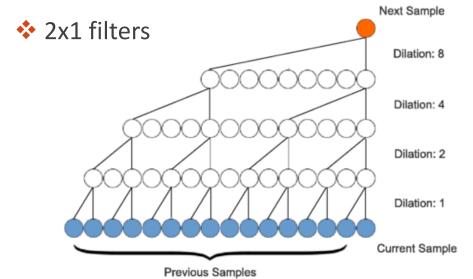
- Causality
- Gated Units
- Softmax Output
- ψ-law Quantization
- Dilation
- Stacks



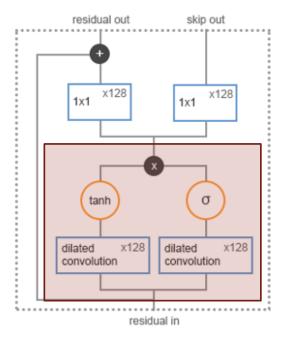
Causality

Gated Units

- Only previous and current sample inform prediction of sample t + 1
- Asymmetric padding



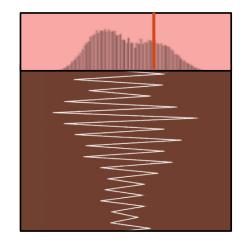
Control contribution of each layer



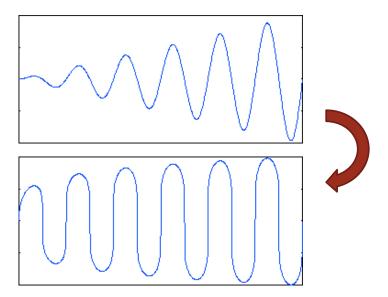
Softmax

μ-law quantization

- No assumptions about output distribution
- Well suited for multi-modal distributions
- * Requires discretization of output



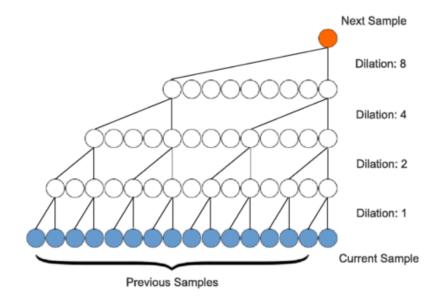
- Non-linear companding
- ❖ Better use of 8-bit quantization space



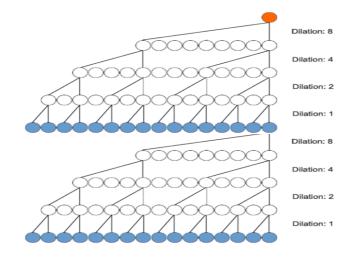
Dilation

Stacks

- Larger receptive field, same parameters
- ❖ By powers of 2



- Repeat dilation pattern
- More depth, less width



Wavenet: Reimplementation

- Many open questions
 - Filter Depths
 - Number of Layers
- Trained on VCTK, 109 native speakers of English, good phonetic coverage
- Proof of concept
- ❖ ~600k parameters

Speech Enhancement

- Within acoustic source separation
- Deterministic
- ❖ Goal: Improve intelligibility and/or overall perceptual quality of speech signal
- Until recently, greatest successes in the frequency domain
 - e.g. estimating spectral mask

$$m_t = s_t + b_t$$

m: mixture

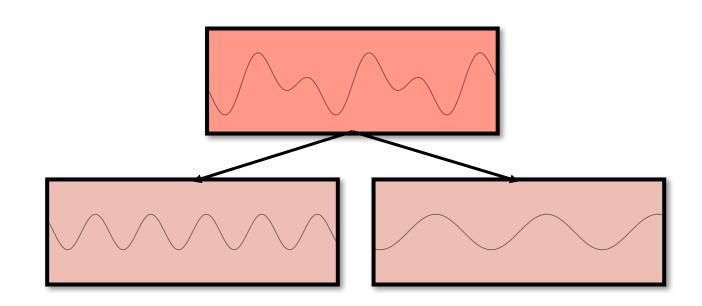
s: speech

b: background

Either estimate $\hat{\boldsymbol{s}}$ given \boldsymbol{m} directly or $\hat{\boldsymbol{b}}$ given \boldsymbol{m} , since $\boldsymbol{s}=\boldsymbol{m}-\boldsymbol{b}$

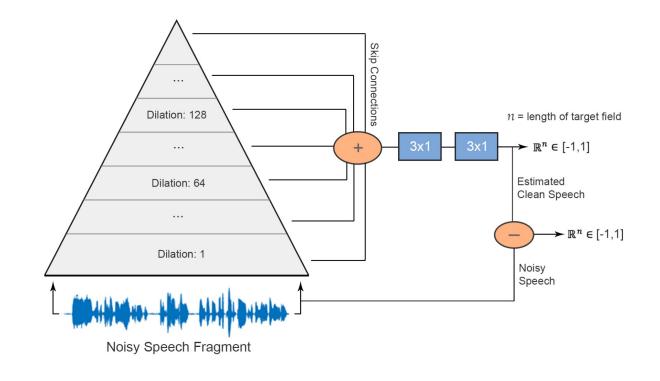
A Wavenet For Source Separation

- Generic architecture, suitable for any acoustic source separation
- Blind two-source separation
- Discriminative
- End-to-end
 - Time-domain input/output
 - No pre/post-filtering
 - No quantization
- 16kHz sampling rate (wide-band)
- Flexible

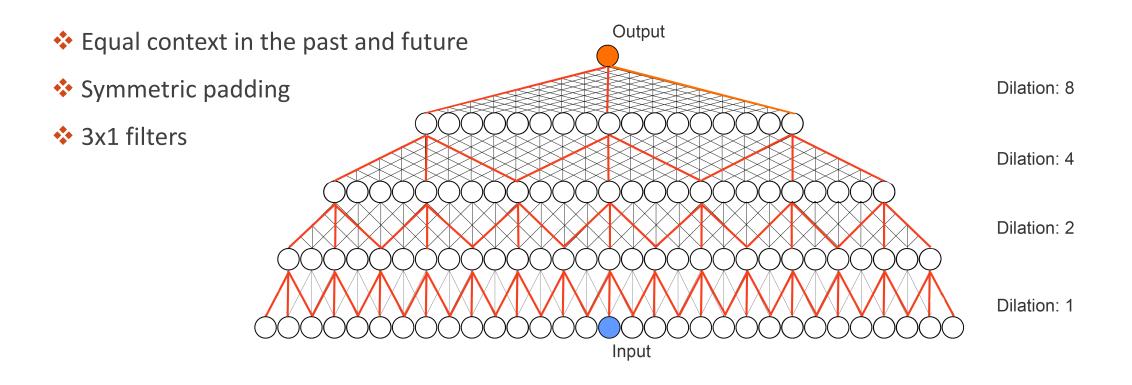


Key Contributions

- Non-causality
- * Real-valued predictions
- Non-autoregressive
- **❖** Target fields
- Enforces time continuity
- Energy-conserving loss



Non-causality



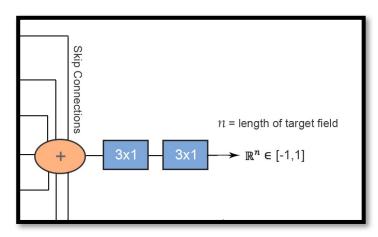
Real-valued Predictions

- Assumes Gaussian output distribution
- No quantization error
- One output unit per output sample

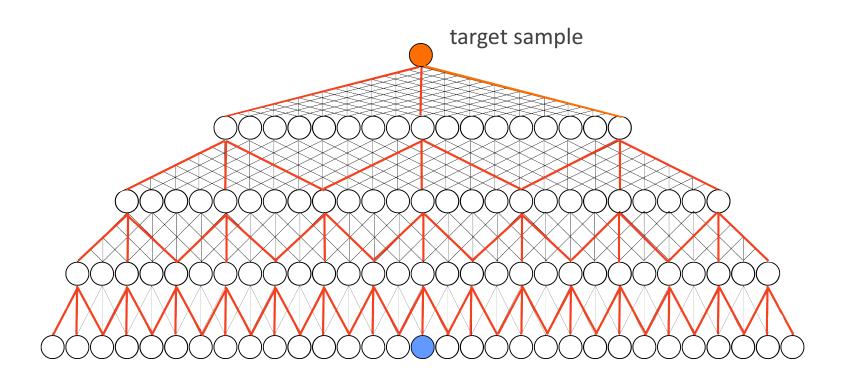
Skip Connections $\mathbb{Z}^1 \in [0,255]$ $\mathbb{R}^{256} \in [0,1]$

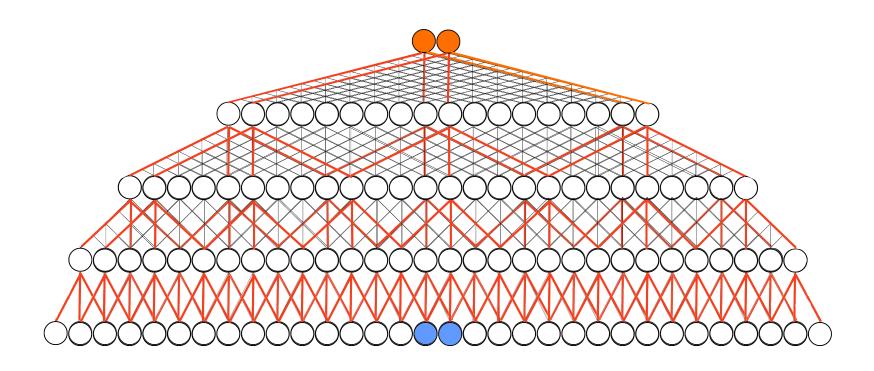
Wavenet

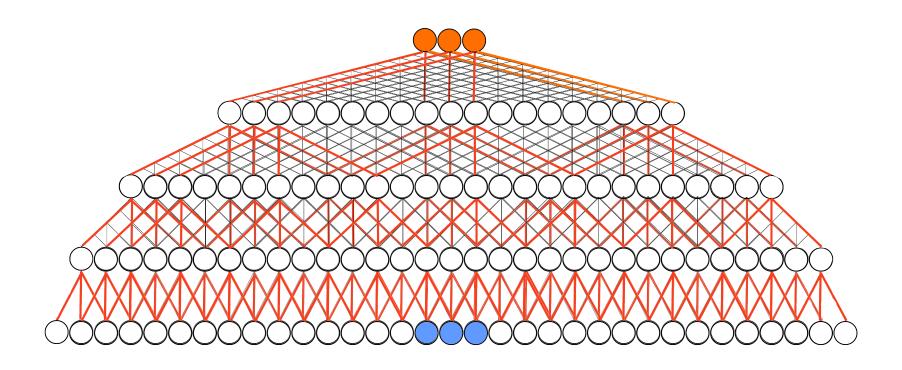
ψ μ-law companding disadvantageous

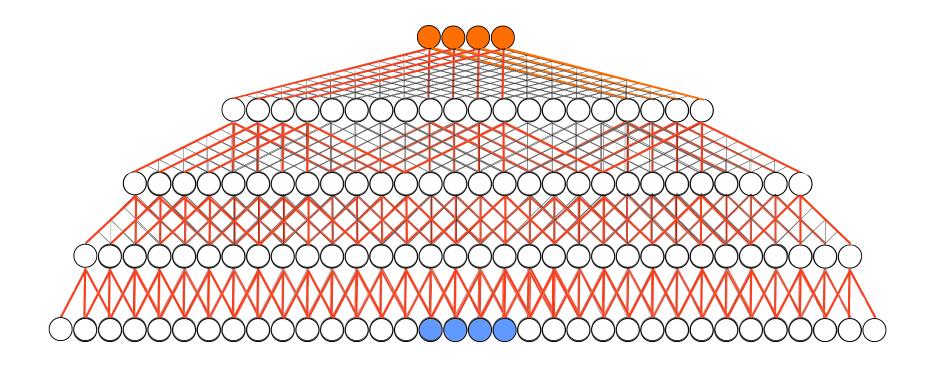


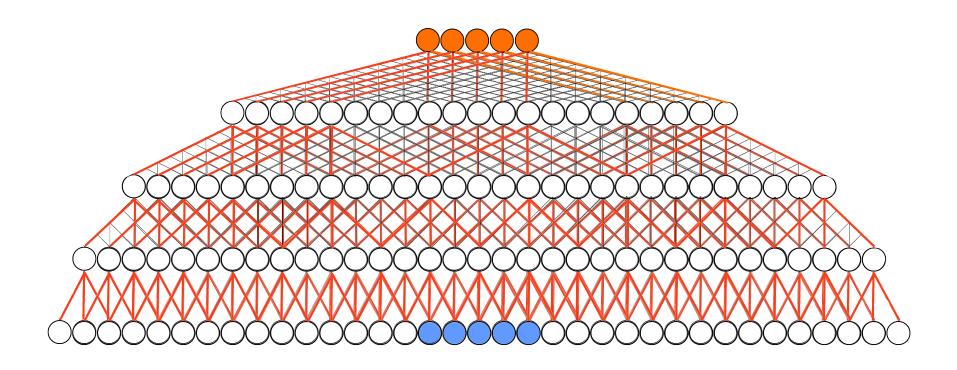
Proposed Model

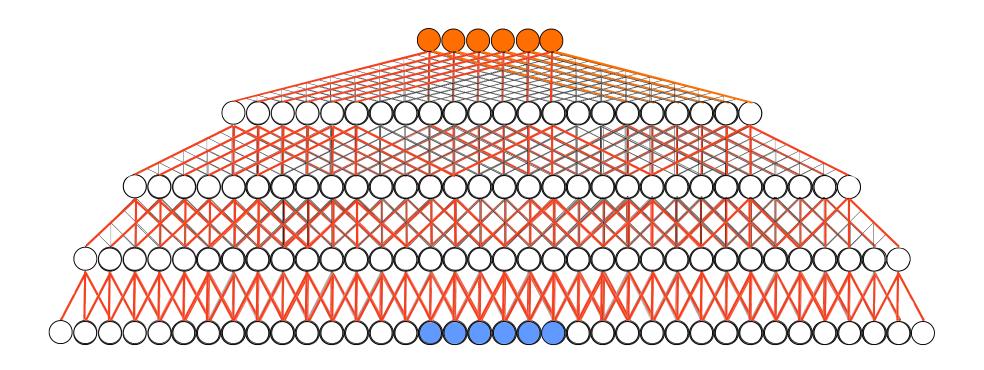


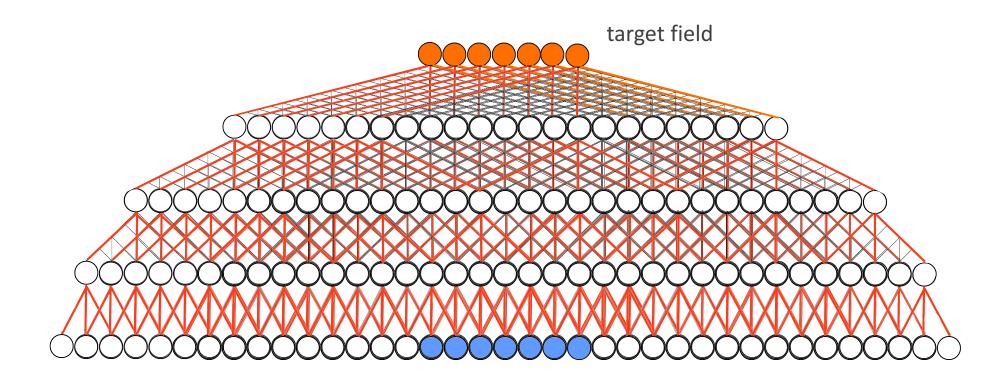




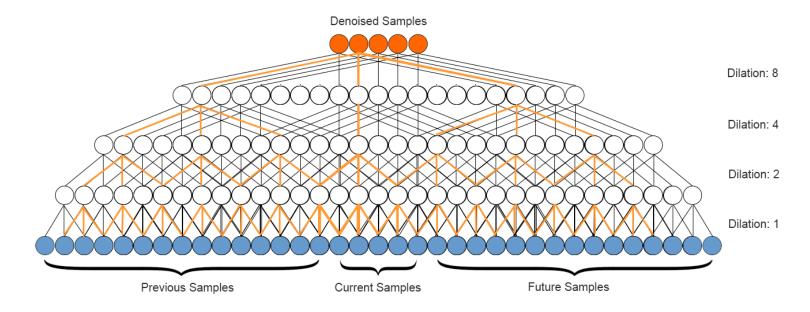






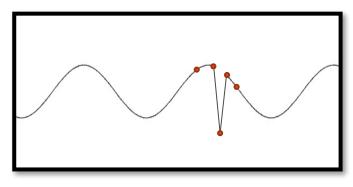


- ❖ Autoregression requires sequential, sample by sample, inference → slow
- Parallel prediction of target field benefits inference AND training

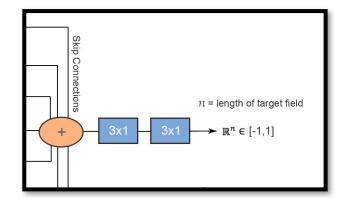


Enforcing Time Continuity

- * Without auroregression, original Wavenet produces point discontinuities
- Very unpleasant sound
- ❖ 3x1 filters in final (non-dilated) layers allow time continuity to be reflected in the loss



Point discontinuity

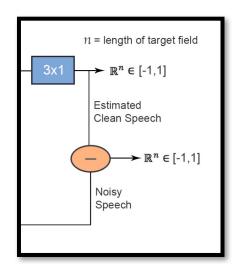


3x1 filters

Energy-Conserving Loss

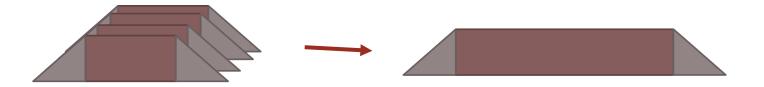
$$\mathcal{L}(\hat{s}_t) = |s_t - \hat{s}_t| + |b_t - \hat{b}_t|$$

- \bullet Goal: $E_{m_t} \equiv E_{\widehat{m}_t}$
- Inspired by dissimilarity losses
- Empirically, reduces algorithmic artifacts



Flexibility in Temporal Dimension

- Same model can be deployed on reduced computational resources
- ❖ Audio input of arbitrary length → one-shot denoising
- * Reduces redundant computations
- 25s of audio in single forward pass (Titan X Pascal)
- ❖ ~0.56s per 1 second of noisy audio
- Fully convolutional



Experiments

Setup

- 33 Layers
 - Dilations: 1, 2, ..., 256, 512
 - Stacks: 3
- ❖ 384ms Receptive Field
- 6.3m parameters

Data

- VCTK for voice
- DEMAND for environmental sounds

Unseen speakers in unseen noise conditions

Training SNR: 0dB – 18dB

Test SNR: 2.5dB – 17.5dB

Evaluation Metrics

- Should be perceptually meaningful
- MOS = mean opinion score (predicted) in range [1,5]
- Weighted combination of objective speech quality measures
- **SIG**: MOS rating of the signal distortion attending only to the speech signal
- * BAK: MOS rating of the intrusiveness of background noise
- **OVL**: MOS rating of the overall effect

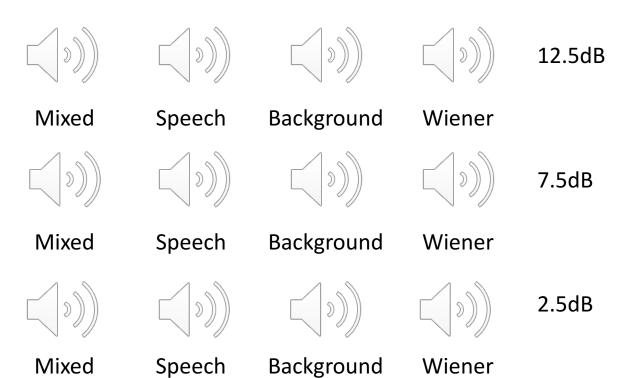
Results

Model	SIG	BAK	OVL	Model	SIG	BAK	OVL	
Noise-only dat	Target	Target field length						
20%	2.74	2.98	2.30	1 sample*	1.37	1.79	1.28	
10%	2.95	3.12	2.49	101 samples*	1.67	2.07	1.50	
0 %	3.62	3.23	2.98	1601 samples	3.62	3.23	2.98	
Loss				Con	Conditioning			
L1	3.54	3.22	2.93	Unconditioned	3.48	3.12	2.88	
Energy-Conserving	3.62	3.23	2.98	Conditioned	3.62	3.23	2.98	
Wiener filtering	3.52	2.93	2.90	Noisy signal	3.51	2.66	2.79	

^{*}Computed on perceptual test set due to computational (time) constraints.

Best Configuration

- Energy-conserving loss
- ❖ 10% noise-only augmentation
- 100ms target field
- Conditioning



Perceptual Evaluation

"give an overall quality score, taking into consideration both: speech quality and background-noise suppression"

- 33 participants
- ❖ 20 samples, 5 at each SNR
- 1-5 quality rating

Wiener Filtering	Proposed Model		
2.92	3.60		

Take away

- ❖ A discriminative adaptation of Wavenet for speech enhancement
- * Reduction in time complexity, without sacrificing expressive capability
- Noise-only augmentation necessary for generating silence
- No speech-specific constraints
- Energy-conservation
- Perceptual trials: Preferred over Wiener Filtering
- ❖ Possible to learn multi-scale hierarchical representations from raw audio
- ❖ Audio samples online, source on GitHub

Future Work

- Continue exploring the idea of energy-conserving losses in neural audio processing models
- * Better handling of short-time high energy events, e.g. honk in city traffic
- Apply to other audio domains
 - Music, multi-track separation

Thank you